
CSc 337
LECTURE 11: KEYBOARD EVENTS



Multiple window.onload listeners
window.onload = function;

window.addEventListener("load", function); JS

• it is considered bad form to directly assign to window.onload
• multiple .js files could be linked to the same page, and if they all need to run code 

when the page loads, their window.onload statements will override each other
• by calling window.addEventListener instead, all of them can run their code 

when the page is loaded



Mouse events
click user presses/releases mouse button on the element

dblclick user presses/releases mouse button twice on the element

mousedown user presses down mouse button on the element

mouseup user releases mouse button on the element

clicking

mouseover mouse cursor enters the element's box

mouseout mouse cursor exits the element's box

mousemove mouse cursor moves around within the element's box

movement

http://wap.w3schools.com/jsref/jsref_onclick.asp
http://wap.w3schools.com/jsref/jsref_ondblclick.asp
http://wap.w3schools.com/jsref/jsref_onmousedown.asp
http://wap.w3schools.com/jsref/jsref_onmouseup.asp
http://wap.w3schools.com/jsref/jsref_onmouseover.asp
http://wap.w3schools.com/jsref/jsref_onmouseout.asp
http://wap.w3schools.com/jsref/jsref_onmousemove.asp


Mouse event objects
The event passed to a mouse handler has these properties:

property/method description

clientX
clientY

coordinates in browser window

screenX
screenY

coordinates in screen

offsetX
offsetY

coordinates in element (non-standard)

button integer representing which button was 
pressed (0=Left, 1=Middle, 2=Right)



Keyboard/text events
name description

focus this element gains keyboard focus (attention of user's keyboard)

blur this element loses keyboard focus

keydown user presses a key while this element has keyboard focus

keyup user releases a key while this element has keyboard focus

keypress user presses and releases a key while this element has keyboard focus

select this element's text is selected or deselected

http://wap.w3schools.com/jsref/jsref_onfocus.asp
http://wap.w3schools.com/jsref/jsref_onblur.asp
http://wap.w3schools.com/jsref/jsref_onkeydown.asp
http://wap.w3schools.com/jsref/jsref_onkeyup.asp
http://wap.w3schools.com/jsref/jsref_onkeypress.asp
http://wap.w3schools.com/jsref/jsref_onselect.asp


Key event objects

property name description

keyCode ASCII integer value of key that was pressed
(convert to char with String.fromCharCode)

altKey, ctrlKey, shiftKey true if Alt/Ctrl/Shift key is being held

• issue: if the event you attach your listener to doesn't have the focus, you won't hear 
the event
• possible solution: attach key listener to entire page body, document, an outer 

element, etc.

http://www.quirksmode.org/js/keys.html


Key event example
document.getElementById("textbox").onkeydown = textKeyDown;

...

function textKeyDown(event) {

var key = String.fromCharCode(event.keyCode);

if (key == 'S' && event.altKey) {

alert("Save the document!");

this.value = this.value.split("").join("-");

}

}                                                            JS

• each time you push down any key, even a modifier such as Alt or Ctrl, the keydown event 
fires

• if you hold down the key, the keydown event fires repeatedly
• keypress event is a bit flakier and inconsistent across browsers



Stopping an event
event method name description

preventDefault stops the browser from doing its normal action on an event; for 
example, stops the browser from following a link when <a> tag is clicked, 
or stops browser from submitting a form when submit button is clicked

stopPropagation stops the browser from showing this event to any other objects that may 
be listening for it

• you can also return false; from your event handler to stop an event



Stopping an event, example
<form id="exampleform" action="http://foo.com/foo.php">...</form>

window.onload = function() {

var form = document.getElementById("exampleform");

form.onsubmit = checkData;

};

function checkData(event) {

if (document.getElementById("state").length != 2) {

alert("Error, invalid city/state.");  // show error message

event.preventDefault();

return false;              // stop form submission

}

}                                                              JS



Some useful key codes

keyboard key event keyCode

Backspace 8

Tab 9

Enter 13

Escape 27

Page Up, Page Down, End, Home 33, 34, 35, 36

Left, Up, Right, Down 37, 38, 39, 40

Insert, Delete 45, 46

Windows/Command 91

F1 - F12 112 - 123



Page/window events

name description

contextmenu the user right-clicks to pop up a context menu

error an error occurs when loading a document or an image

load, unload the browser loads the page

resize the browser window is resized

scroll the user scrolls the viewable part of the page up/down/left/right

unload the browser exits/leaves the page

• The above can be handled on the window object

http://wap.w3schools.com/jsref/dom_obj_event.asp
http://wap.w3schools.com/jsref/jsref_onerror.asp
http://wap.w3schools.com/jsref/jsref_onload.asp
http://wap.w3schools.com/jsref/jsref_onunload.asp
http://wap.w3schools.com/jsref/jsref_onresize.asp
http://wap.w3schools.com/jsref/dom_obj_event.asp
http://wap.w3schools.com/jsref/jsref_onunload.asp


Removing a node from the page
function slideClick() {

var bullet = document.getElementById("removeme");

bullet.parentNode.removeChild(bullet);

}                                                             JS

• odd idiom: obj.parentNode.remove(obj);



Getting/setting CSS classes
function highlightField() {

// turn text yellow and make it bigger

var text = document.getElementById("text");

if (!text.className) {

text.className = "highlight";

} else if (text.className.indexOf("invalid") < 0) {

text.className += " highlight";   // awkward

}

}                                                             JS

• JS DOM's className property corresponds to HTML class attribute
• somewhat clunky when dealing with multiple space-separated classes as 

one big string 



Getting/setting CSS classes with classList
function highlightField() {

// turn text yellow and make it bigger

var text = document.getElementById("text");

if (!text.classList.contains("invalid")) {

text.classList.add("highlight");

}

}                                                             JS

• classList collection has methods add, remove, contains, toggle to manipulate 
CSS classes

• similar to existing className DOM property, but don't have to manually split by 
spaces 



Activity: Mouse Maze



Mouse Maze
This lab practices unobtrusive JavaScript events and the Document Object Model (DOM). We'll write a 
page with a "maze" to navigate with the mouse. You will write maze.js to implement the maze behavior.



Info about the maze
Download the file below (right-click, Save Target As...) to get started: maze.html

The difficulty is in having the dexterity to move the mouse through without touching any walls. 
When the mouse cursor touches a wall, all walls turn red and a "You lose" message shows. Touching 
the Start button with the mouse removes the red coloring from the walls.

The maze walls are 5 div elements. Our provided CSS puts the divs into their proper places.

<div id="maze">
<div id="start">S</div>
<div class="boundary" id="boundary1"></div>
<div class="boundary"></div>
<div class="boundary"></div>
<div class="boundary"></div>
<div class="boundary"></div>
<div id="end">E</div>

</div>

http://allisonobourn.com/337/labs/maze.html


Exercise : Single boundary turns red
Write code so that when the user moves the mouse onto a single one of the maze's walls 
(onmouseover), that wall will turn red. Use the top-left wall; it is easier because it has an id of 
boundary1.

•Write your JS code unobtrusively, without modifying maze.html.

•Write a window.onload handler that sets up any event handlers.

•Handle the event on the wall by making it turn red.

•Turn the wall red by setting it to have the provided CSS class you lose, 
using the classList property.



Exercise : All boundaries glow red on 
hover
Make it so that all maze walls turn red when the mouse enters any one of them.

•You'll need to attach an event handler to each div that represents a wall of the maze.

•It is harder to select all of these divs, since they do not have id attributes.

•But they do all have a class of boundary. Use the document.querySelectorAll function to 
access them all.



Exercise : Alert on completion of maze
Make it so that if the user reaches the end of the maze, a "You win!" alert message appears.

•The end of the maze is a div with an id of end.

•Don't pop up "You win!" unless the user makes it to the end without touching any walls.

•Keep track of whether any walls were hit, so you'll know what to do when the end square is hit.



Exercise : Restartable maze
Make it so that when the user clicks the mouse on the Start square (a div with an id of start), 
the maze state will reset. That is, if the maze boundary walls are red, they will all return to their 
normal color, so that the user can try to get through the maze again.

•You'll need to use the document.querySelectorAll function again to select all of the 
squares to set their color.



Exercise : JSLint
•Verify your JavaScript code by making sure it passes JSLint with no errors.



Exercise : On-page status updates
Instead of an alert, make the "You win" and "You lose" messages appear in the page itself.

•The page has an (initially empty) h2 element on the page with an id of status. Put the win/lose 
text into that div when the user finishes the maze.



Exercise : Disallow cheating
It's too easy to cheat: Just move your mouse around the outside of the maze!

•Fix this by making it so that if the user moves the mouse anywhere outside the maze after 
clicking the Start area, the walls will light up red and the player will lose the game.

•To do this, you'll need to listen to other kinds of mouse events on other elements.



Exercise : Additional Features
•Add a timer to the page so that once you start playing the maze, it starts the timer, and stops it 
when you complete the maze. Pop up the time in an alert message to the user.

•Modify the timer so that instead of popping up an alert, the timer is displayed in the page, and 
updates every second. When the maze ends, the timer on the page stops.

•Implement a "lives" system - start out the user with 5 lives, and decrement each time they lose.

•Implement the Konami Code - Make the user type "Up Up Down Down Left Right Left Right B A" 
to unlock 999 lives.


