
CSc 337
LECTURE 14: JSON AND WEB SERVICES

Weather - exercise
{"city": "London",
"country": "CA",
"weather": [

{"temperature": 80.35,"icon": "02d"},
{"temperature": 83.59,"icon": "01d"},
{"temperature": 72.14,"icon": "10d"},
{"temperature": 56.50,"icon": "01d"},
{"temperature": 61.84,"icon": "01d"},
{"temperature": 67.93,"icon": "01d"},
{"temperature": 76.06,"icon": "01d"}

]
}

Write code to add an h1 to a page containing the city name and a list with each element
containing the temperature

reminder: bad style - the eval function
// var data = JSON.parse(this.responseText);

var data = eval(this.responseText); // don't do this!

... JS

• JavaScript includes an eval keyword that takes a string and runs it as code
• this is essentially the same as what JSON.parse does,
• but JSON.parse filters out potentially dangerous code; eval doesn't
• eval is evil and should not be used!

Writing server code

URLs and web servers
http://server/path/file

• usually when you type a URL in your browser:
• your computer looks up the server's IP address using DNS
• your browser connects to that IP address and requests the given file
• the web server software (e.g. Apache) grabs that file from the server's local file

system, and sends back its contents to you

• some URLs actually specify programs that the web server should run, and then send
their output back to you as the result:
http://localhost:3000/service1.js

• the above URL tells the server localhost:3000 to run the
program service1.js and send back its output

Server-Side web programming

• server-side pages are programs written using one of many web programming
languages/frameworks

◦ examples: Node.js PHP, Java/JSP, Ruby on Rails, ASP.NET, Python, Perl

• the web server contains software that allows it to run those programs and send back
their output

• each language/framework has its pros and cons

◦ we will use Node for server-side programming

https://nodejs.org/
http://php.net/
http://java.sun.com/products/jsp/
http://www.rubyonrails.org/
http://www.asp.net/
http://www.djangoproject.com/
http://www.cgi101.com/learn/

Lifecycle of a web request

• browser requests a .html file with no Ajax requests in the JavaScript
(static content): server just sends that file

• browser requests a .html file with an Ajax request in the JavaScript
(dynamic content): server reads it, runs any script code inside it

Web Browser Web Server

Node.js Script

execute
script

Response
output

Basic web service
// CSC 337 hello world server

const express = require("express");

const app = express();

app.use(express.static('public'));

app.get('/', function (req, res) {

res.header("Access-Control-Allow-Origin", "*");

res.send('Hello World!');

})

app.listen(3000);

ExpressJS
◦We're going to use a library called ExpressJS on top of NodeJS

◦ It is a lightweight framework that will help us organize our code

Basic web service
// CSC 337 hello world server

const express = require("express");

const app = express();

app.use(express.static('public'));

app.get('/', function (req, res) {

res.header("Access-Control-Allow-Origin", "*");

res.send('Hello World!');

})

app.listen(3000);

require()
const express = require("express");

The NodeJS require() statement loads a module, similar to import in Java
or Python.

We can require() modules included with NodeJS, or modules we've
written ourselves.

listen()

app.listen(3000);

The listen() function will start accepting connections on the
given port number.

Ports and binding
port: In the context of networking, a "logical" (as opposed to a
physical) connection place
◦ A number from 0 to 65535 (16-bit unsigned integer)

◦ Used to distinguish a message for one program from another

When you start running a server process, you tell the operating system
what port number to associate with it. This is called binding.

Port defaults
There are many well-known ports, i.e. the ports that will be used by default for particular
protocols:
21: File Transfer Protocol (FTP)
22: Secure Shell (SSH)
23: Telnet remote login service
25: Simple Mail Transfer Protocol (SMTP)
53: Domain Name System (DNS) service
80: Hypertext Transfer Protocol (HTTP) used in the World Wide Web
110: Post Office Protocol (POP3)
119: Network News Transfer Protocol (NNTP)
123: Network Time Protocol (NTP)
143: Internet Message Access Protocol (IMAP)
161: Simple Network Management Protocol (SNMP)
194: Internet Relay Chat (IRC) 443: HTTP Secure (HTTPS)

Development Server
- We have been using 3000 in examples but you can use whatever
number you want

app.listen(3000);

Avoiding CORS Errors
Allows us to access our code on localhost.
◦ otherwise NodeJS thinks we are on different machines

app.use(express.static('public'));

Making a Request
The type of request we are making right now is GET

req: an object representing the request

res: an object representing the response

app.get('/', function (req, res) {

res.header("Access-Control-Allow-Origin", "*");

res.send('Hello World!');

})

Get Query Parameters in Express
Query parameters are saved in req.query

app.get('/', function (req, res) {

res.header("Access-Control-Allow-Origin", "*");

◦const queryParams = req.query;

◦console.log(queryParams);
◦const name = req.query.name;

res.send('Hello' + name);

})

Exercise
Write a web service that takes an exponent and base as parameters
and outputs the based raised to the exponent

