
CSc 337
LECTURE 1: POST



Exercise - part 3
If there are no books that are in the category that the user supplies have 
your service return a 410 status and a message about the category not 
being found. 

Set the status with the following code:

res.status(410);



GET vs POST
Two different types of requests you can send to a web service:

GET - asks the server for data

POST - sends data to the server

Why can't POST requests work the same way as GET requests?



Dealing with a POST request in a service
app.post('/', function (req, res) {

res.header("Access-Control-Allow-Origin", "*");  

res.send('Hello world');

});

- instead of using app.get use app.post

- Send response as usual



Making a POST request from the client
fetch(url, {method : 'POST'})

.then(checkStatus)

.then(function(responseText) {

})

.catch(function(error) {

});

}

- Add a second parameter to fetch specifying the method
- There are many methods POST, PUT, PATCH, DELETE, …
-Get is the default method



Sending parameters
Send parameters as JSON!

By default parsing is really messy so we will install a helpful package -
body-parser

Run this on the command line in your code directory:

npm install body-parser



Sending Parameters
const message = {name: "Allison", 

email: "aeobourn@cs.arizona.edu"};
const fetchOptions = {

method : 'POST',
headers : {

'Accept': 'application/json',
'Content-Type' : 'application/json'

},
body : JSON.stringify(message);

}
fetch(url, fetchOptions)

.then(checkStatus)

Add a stringified version of the JSON you want to send to an object containing 
the other options and send that. 



Dealing with POST parameters on the 
server
const  bodyParser = require('body-parser');

const jsonParser = bodyParser.json();

app.post('/', jsonParser, function (req, res) {
const name = req.body.name;

res.send('Hello, ' + name);

});

Accessing parameters is similar to with a get request except you need to access req.body
instead of req.query



Prefilght CORS error
The code on the previous slide produces an error because it is accepting complex parameter 
content and Allow-Access-Control-Origin isn't set.

◦ Adding this line in where we usually do doesn't fix this. 

◦ Add the code below instead:

app.use(function(req, res, next) {

res.header("Access-Control-Allow-Origin", "*");

res.header("Access-Control-Allow-Headers", 

"Origin, X-Requested-With, Content-Type, Accept");

next();

});



File Turn In Client
Write a page that allows the user to enter their name, email and select an 
assignment number from a dropdown menu. It should also include a text 
area where they can paste their code and a submit button.

When the user clicks the submit button the information should be sent to 
the server as a POST request. 



File Turn In Service
Write a web service that accepts that data your client page posted. You service 
should save the code from the text area into a file named the student's name and 
section. 

The service should send a success message back to the client if it was successful 
and a failure message back if it was not.  

File saving information on the next slide. 



Writing Files
appending to a file:
fs.appendFile(filename, filecontent, function(err) {

if(err) {
return console.log(err);

}
console.log("The file was saved!");

});

writing to a file:
fs.writeFile(filename, filecontent, function(err) {

if(err) {
return console.log(err);

}
console.log("The file was saved!");

});



File Turn In Confirmation 
Have your page display a confirmation message stating whether the request was 
successful. This message should include the code the user submitted if the 
request came back successful. 


