
1 of 11

CSc 110 Sample Midterm Exam #2

1. Collections Mystery

Consider the following function:

def mystery(m):

 s = set()

 for key in m.keys():

 if (m[key] != key):

 s.add(m[key])

 else:

 s.add(m[key][0])

 print(s)

Write the output that is printed when the function above is passed each of the following dictionaries as its

parameter.

{'sheep':'wool', 'house':'brick', 'cast':'plaster', 'wool':'wool'}

{'munchkin':'blue','winkie':'yellow','corn':'yellow','grass':'green','emerald':'green'}

{'pumpkin':'peach','corn':'apple','apple':'apple','pie':'fruit','peach':'peach'}

 __

{'lab':'ipl','lion':'cat','terrier':'dog','cat':'cat','platypus':'animal','nyan':'cat'}

 __

2 of 11

2. 2D List Mystery

Consider the following function:
 def mystery(data):

 result = set()

 for i in range(1, len(data)):

 for j in range(0, len(data[i]) - 1):

 result.add(data[i][j] - 1)

 return result

In the left-hand column below are specific two-dimensional lists. You are to indicate in the right-hand column

what values would be stored in the set returned by function mystery if the list in the left-hand column is passed

as a parameter to mystery.

 Two-Dimensional List Contents of List Returned

 [[0, 1], [2, 3]] __

 [[0, 1, 2], [3, 4, 5], [6, 7, 8]] __

 [[3, 4], [1, 2, 3], [], [5, 6]] __

 [[4, 5], [1, 2, 3, 3, 2, 1], [2, 2, 3]] ___

3 of 11

3. Searching and Sorting.

(a) Suppose we are performing a binary search on a sorted list called numbers initialized as follows:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

numbers = [-2, 0, 1, 7, 9, 16, 19, 28, 31, 40, 52, 68, 85, 99]

search for the value 5

index = binary_search(numbers, 5)

Write the indexes of the elements that would be examined by the binary search (the mid values in our

algorithm's code) and write the value that would be returned from the search. Assume that we are using the

binary search algorithm shown in lecture and section.

 Indexes examined: ___

 Value Returned: __________________________

(b) Write the state of the elements of the list below after each of the first 3 passes of the outermost loop of

the selection sort algorithm.

numbers = [63, 9, 45, 72, 27, 18, 54, 36]

selection_sort(numbers)

(c) Trace the complete execution of the merge sort algorithm when called on the list below, similarly to the

example trace of merge sort shown in the lecture slides. Show the sub-lists that are created by the

algorithm and show the merging of sub-lists into larger sorted lists.

numbers = [63, 9, 45, 72, 27, 18, 54, 36]

merge_sort(numbers)

4 of 11

4. String Programming

Write a static method called encode that takes a string s and an integer n as parameters and that returns a new string that

scrambles the order of the characters from s in a particular way. Taking the characters from s in order, imagine filling

a grid of n rows column by column. When s is "abcdefghijklmnopqrstuvwxyz" and n is 3, you get:

 row 1: a d g j m p s v y

 row 2: b e h k n q t w z

 row 3: c f i l o r u x

The method should return the result of concatenating these characters together with row 1 first, then row 2, and then row

3. Notice that the final column will not necessarily be complete, as in the example above where the final column has

only two characters. So if you make the call:

 encode("abcdefghijklmnopqrstuvwxyz", 3)

 You should get back the string "adgjmpsvybehknqtwzcfilorux". The string might contain any characters,

including spaces. For example, the call:

 encode("four score and seven", 4)

 returns "f rneosedvuc eroasn" because the following grid would be produced:

 row 1: f r n e

 row 2: o s e d v

 row 3: u c e

 row 4: r o a s n

 You may assume that the string passed as a parameter is not empty and that the integer passed as a parameter is greater

than or equal to 1 and less than the length of the string. You are not allowed to construct any structured objects other

than strings to solve this problem (no list, list of lists, etc).

5 of 11

5. List of Lists Programming

Write a function called num_unique that takes a list of lists as a parameter and returns the number of unique values

stored in it. For example, if you have the following list of lists:

 lis = [[1, 2, 3], [4, 3, 2, 1], [6, 7, 7], [8]]

 a call to num_unique(lis) should return 7. You may create one other data structure to help you solve this

problem.

6 of 11

6. Collections Programming

Write a function grade_stats that accepts as a parameter a list representing the grades given in a course and

returns a dictionary mapping each grade to the count of how many were given. For example, if a list grades

contains the following:
['A', 'I', 'C', 'C', 'E', 'B', 'A', 'E', 'E', 'A', 'B', 'B', 'B']

The call of grade_stats(grades) should return the following dictionary:
{'A':3, 'I':1, 'C':2, 'E':3, 'B':4}

Note that the grades may not always be A, B, C, D, E and I. For example, A- is a valid grade some places as is

3.7. You should treat whatever is in the passed in list as a valid grade.

If the passed in list is empty, your function should return an empty dictionary.

7 of 11

7. Collections Programming

Write a function union that accepts two dictionaries (whose keys and values are both integers) as parameters,

and returns a new dictionary that represents a merged union of the two original dictionaries. For example, if

two dictionaries m1 and m2 contain these pairs:

{7=1, 18=5, 42=3, 76=10, 98=2, 234=50} m1

{7=2, 11=9, 42=-12, 98=4, 234=0, 9999=3} m2

The call of union(m1, m2) should return a dictionary that contains the following pairs:

{7=3, 11=9, 18=5, 42=-9, 76=10, 98=6, 234=50, 9999=3}

The "union" of two dictionaries m1 and m2 is a new dictionary that contains every key from m1 and every

key from m2. Each value stored in your "union" map should be the sum of the corresponding value(s) for

that key in m1 and m2, or if the key exists in only one of the two maps, that map's corresponding value

should be used. For example, in the maps above, the key 98 exists in both maps, so the result contains the

sum of its values from the two maps, 2 + 4 = 6. The key 9999 exists in only one of the two maps, so its sole

value of 3 is stored as its value in the result map.

Either dictionary passed in (or both) could be empty. Though the pairs are shown in sorted order by key

above, you should not assume that the dictionaries passed to you store their keys in sorted order.

You may create one collection of your choice as auxiliary storage to solve this problem. You can have as

many simple variables as you like. You should not modify the contents of the dictionaries passed to your

function.

8 of 11

8. List Programming

Write a function named longest_sorted_sequence that accepts an list of integers as a parameter and that returns

the length of the longest sorted (nondecreasing) sequence of integers in the list. For example, if a variable named lis

stores the following values:

lis = [3, 8, 10, 1, 9, 14, -3, 0, 14, 207, 56, 98, 12]

 then the call of longest_sorted_sequence(lis) should return 4 because the longest sorted sequence in the list

has four values in it (the sequence -3, 0, 14, 207). Notice that sorted means nondecreasing, which means that the

sequence could contain duplicates. For example, if the list stores the following values:

lis2 = [17, 42, 3, 5, 5, 5, 8, 2, 4, 6, 1, 19]

 Then the method would return 5 for the length of the longest sequence (the sequence 3, 5, 5, 5, 8). Your method

should return 0 if passed an empty list. Your method should return 1 if passed an list that is entirely in decreasing

order or contains only one element.

9 of 11

9. Programming

Write a function called split_pairs that takes a list of integers as a parameter and that returns a new list containing

the result of splitting successive pairs of numbers so that the first values from each pair appear first followed by the

second values from each pair. For example, suppose that a variable called list stores the following:
 [3, 8, 4, 9, 7, 2]

This list has three pairs: (3, 8), (4, 9), and (7, 2). Thus, the call split_pairs(list) should return the following

list:
 [3, 4, 7, 8, 9, 2]

Notice that this list contains the first values from each pair (3, 4, 7) followed by the second values from each pair (8,

9, 2). If there is an extra value that is not part of a pair, then it should be included with the first set of values in the

new list. For example, if list stores:
 [7, 5, 3, 2, 8, 4, 6]

then the call split_pairs(list) should return:
 [7, 3, 8, 6, 5, 2, 4]

The value 6 in the original list is not part of a pair. Notice that the new list has the first values from each pair (7, 3, 8)

followed by 6 followed by the second values from each pair (5, 2, 4).

The function should not construct any extra data structures other than the list to be returned andit should not alter its

parameter.

10 of 11

CSc 110 Sample Midterm Exam #2 Solutions

1. Collections Mystery

{'plaster', 'wool', 'brick', 'w'}

{'yellow', 'blue', 'green'}
{'a', 'p', 'peach', 'apple', 'fruit'}
{'cat', 'ipl', 'animal', 'c', 'dog'}

2. Inheritance Mystery

{1}

{2, 3, 5, 6}

{0, 1, 4}

{0, 1, 2}

3. Searching and Sorting

(a) Indexes examined: 6, 2, 4, 3 Value returned: -4

(b) [9, 63, 45, 72, 27, 18, 54, 36]
 [9, 18, 45, 72, 27, 63, 54, 36]
 [9, 18, 27, 72, 45, 63, 54, 36]

(c) [63, 9, 45, 72, 27, 18, 54, 36]

 [63, 9, 45, 72] [27, 18, 54, 36] split

 [63, 9] [45, 72] [27, 18] [54, 36] split

 [63] [9] [45] [72] [27] [18] [54] [36] split

 [9, 63] [45, 72] [18, 27] [36, 54] merge

 [9, 45, 63, 72] [18, 27, 36, 54] merge

 [9, 18, 27, 36, 45, 54, 63, 72] merge

4. String Programming

 def encode(s, n):

 result = ""

 for j in range(0, n):

 for i in range(0, len(s) – j, n):

 result += s[i + j]

 return result

5. List of Lists Programming

def num_unique(lis):

 unique = set()

 for i in range(0, len(lis)):

 for j in range(0, len(lis[i])):

 unique.add(lis[i][j])

 return len(unique)

11 of 11

6. Collections Programming

def grade_stats(lis):

 grades = {}

 for grade in lis:

 if grade in grades:

 grades[grade] = grades[grade] + 1

 else:

 grades[grade] = 1

 return grades

7. Collections Programming

def union(m1, m2):
 result = {}

 for key, value in m1.items():
 result[key] = value
 for key, value in m2.items()):

 if (key in result)
 result[key] = result.get(key) + value
 else:

 result[key] = value
 return result

8. List Programming

def longest_sorted_sequence(list):
 if (len(list) == 0):
 return 0

 max = 1
 count = 1
 for i in range(1, len(list)):

 if (list[i] >= list[i - 1]):
 count += 1
 else:

 count = 1

 if (count > max):

 max = count
 return max

9. Programming

 def split_pairs(lis):

 half = len(lis) // 2

 result = [0] * len(lis)

 for i in range(0, len(lis)):

 if i % 2 == 0:

 result[i // 2] = lis[i]

 elif len(lis) % 2 == 0:

 result[i // 2 + half] = list[i]

 else:

 result[i // 2 + half + 1] = list[i]

 return result

