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CSc 110 Sample Midterm Exam #2 

1. Collections Mystery 

Consider the following function:   
 

def mystery(m): 

      s = set() 

      for key in m.keys(): 

          if (m[key] != key): 

              s.add(m[key]) 

          else: 

              s.add(m[key][0]) 

      print(s) 

 

Write the output that is printed when the function above is passed each of the following dictionaries as its 

parameter.  
 

{'sheep':'wool', 'house':'brick', 'cast':'plaster', 'wool':'wool'}    

 

  

_______________________________________________________________ 

 

 
{'munchkin':'blue','winkie':'yellow','corn':'yellow','grass':'green','emerald':'green'}  

 

 

_______________________________________________________________ 

 

 
{'pumpkin':'peach','corn':'apple','apple':'apple','pie':'fruit','peach':'peach'}    

 

 

  

 __________________________________________________________________ 

 

 
{'lab':'ipl','lion':'cat','terrier':'dog','cat':'cat','platypus':'animal','nyan':'cat'} 

 

 

 

 __________________________________________________________________ 
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2. 2D List Mystery 

 

Consider the following function: 
 def mystery(data): 

     result = set() 

     for i in range(1, len(data)): 

  for j in range(0, len(data[i]) - 1): 

      result.add(data[i][j] - 1) 

     return result 

 

In the left-hand column below are specific two-dimensional lists.  You are to indicate in the right-hand column 

what values would be stored in the set returned by function mystery if the list in the left-hand column is passed 

as a parameter to mystery.   

 

        Two-Dimensional List                                             Contents of List Returned 

 

 
   [[0, 1], [2, 3]]                    ________________________________________________ 

 

 

   [[0, 1, 2], [3, 4, 5], [6, 7, 8]]   ________________________________________________ 

 

 

   [[3, 4], [1, 2, 3], [], [5, 6]]    ________________________________________________ 

 

 

   [[4, 5], [1, 2, 3, 3, 2, 1], [2, 2, 3]]  _____________________________________________ 
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3. Searching and Sorting. 

(a) Suppose we are performing a binary search on a sorted list called numbers initialized as follows: 

# index     0   1   2   3   4   5   6   7   8   9  10  11  12  13 

numbers = [-2,  0,  1,  7,  9, 16, 19, 28, 31, 40, 52, 68, 85, 99] 

 

# search for the value 5 

index = binary_search(numbers, 5) 

Write the indexes of the elements that would be examined by the binary search (the mid values in our 

algorithm's code) and write the value that would be returned from the search.  Assume that we are using the 

binary search algorithm shown in lecture and section. 

 Indexes examined: ___________________________________________________________ 

 Value Returned: __________________________ 

 

 

(b) Write the state of the elements of the list below after each of the first 3 passes of the outermost loop of 

the selection sort algorithm. 

numbers = [63, 9, 45, 72, 27, 18, 54, 36] 

selection_sort(numbers) 

 

 

 

 

 

(c) Trace the complete execution of the merge sort algorithm when called on the list below, similarly to the 

example trace of merge sort shown in the lecture slides.  Show the sub-lists that are created by the 

algorithm and show the merging of sub-lists into larger sorted lists. 

numbers = [63, 9, 45, 72, 27, 18, 54, 36] 

merge_sort(numbers) 
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4.  String Programming 

Write a static method called encode that takes a string s and an integer n as parameters and that returns a new string that 

scrambles the order of the characters from s in a particular way.  Taking the characters from s in order, imagine filling 

a grid of n rows column by column.  When s is "abcdefghijklmnopqrstuvwxyz" and n is 3, you get: 

 

        row 1:       a d g j m p s v y 

        row 2:       b e h k n q t w z 

        row 3:       c f i l o r u x 

 

The method should return the result of concatenating these characters together with row 1 first, then row 2, and then row 

3.  Notice that the final column will not necessarily be complete, as in the example above where the final column has 

only two characters.  So if you make the call: 

 
        encode("abcdefghijklmnopqrstuvwxyz", 3) 

 

    You should get back the string "adgjmpsvybehknqtwzcfilorux".  The string might contain any characters, 

including spaces.  For example, the call: 

 
        encode("four score and seven", 4) 

 

    returns "f rneosedvuc eroasn" because the following grid would be produced: 

 

        row 1:       f   r n e 

        row 2:       o s e d v 

        row 3:       u c     e 

        row 4:       r o a s n 

 

   You may assume that the string passed as a parameter is not empty and that the integer passed as a parameter is greater 

than or equal to 1 and less than the length of the string.  You are not allowed to construct any structured objects other 

than strings to solve this problem (no list, list of lists, etc). 
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5. List of Lists Programming 

Write a function called num_unique that takes a list of lists as a parameter and returns the number of unique values 

stored in it. For example, if you have the following list of lists: 

 lis = [[1, 2, 3], [4, 3, 2, 1], [6, 7, 7], [8]] 

 a call to num_unique(lis) should return 7. You may create one other data structure to help you solve this 

problem. 
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6. Collections Programming 

Write a function grade_stats that accepts as a parameter a list representing the grades given in a course and 

returns a dictionary mapping each grade to the count of how many were given. For example, if a list grades 

contains the following: 
['A', 'I', 'C', 'C', 'E', 'B', 'A', 'E', 'E', 'A', 'B', 'B', 'B'] 

The call of grade_stats(grades) should return the following dictionary: 
{'A':3, 'I':1, 'C':2, 'E':3, 'B':4} 

Note that the grades may not always be A, B, C, D, E and I. For example, A- is a valid grade some places as is 

3.7. You should treat whatever is in the passed in list as a valid grade. 

If the passed in list is empty, your function should return an empty dictionary.  
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7. Collections Programming 

Write a function union that accepts two dictionaries (whose keys and values are both integers) as parameters, 

and returns a new dictionary that represents a merged union of the two original dictionaries.  For example, if 

two dictionaries m1 and m2 contain these pairs: 

{7=1, 18=5, 42=3, 76=10, 98=2, 234=50}     m1 

{7=2, 11=9, 42=-12, 98=4, 234=0, 9999=3}   m2 

The call of union(m1, m2) should return a dictionary that contains the following pairs: 

{7=3, 11=9, 18=5, 42=-9, 76=10, 98=6, 234=50, 9999=3} 

The "union" of two dictionaries m1 and m2 is a new dictionary that contains every key from m1 and every 

key from m2.  Each value stored in your "union" map should be the sum of the corresponding value(s) for 

that key in m1 and m2, or if the key exists in only one of the two maps, that map's corresponding value 

should be used.  For example, in the maps above, the key 98 exists in both maps, so the result contains the 

sum of its values from the two maps, 2 + 4 = 6.  The key 9999 exists in only one of the two maps, so its sole 

value of 3 is stored as its value in the result map. 

Either dictionary passed in (or both) could be empty.  Though the pairs are shown in sorted order by key 

above, you should not assume that the dictionaries passed to you store their keys in sorted order. 

You may create one collection of your choice as auxiliary storage to solve this problem.  You can have as 

many simple variables as you like.  You should not modify the contents of the dictionaries passed to your 

function.   
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8. List Programming 

Write a function named longest_sorted_sequence that accepts an list of integers as a parameter and that returns 

the length of the longest sorted (nondecreasing) sequence of integers in the list.  For example, if a variable named lis 

stores the following values: 

lis = [3, 8, 10, 1, 9, 14, -3, 0, 14, 207, 56, 98, 12] 

 then the call of longest_sorted_sequence(lis) should return 4 because the longest sorted sequence in the list 

has four values in it (the sequence -3, 0, 14, 207).  Notice that sorted means nondecreasing, which means that the 

sequence could contain duplicates.  For example, if the list stores the following values: 

lis2 = [17, 42, 3, 5, 5, 5, 8, 2, 4, 6, 1, 19] 

 Then the method would return 5 for the length of the longest sequence (the sequence 3, 5, 5, 5, 8).  Your method 

should return 0 if passed an empty list.  Your method should return 1 if passed an list that is entirely in decreasing 

order or contains only one element. 
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9. Programming 

 

Write a function called split_pairs that takes a list of integers as a parameter and that returns a new list containing 

the result of splitting successive pairs of numbers so that the first values from each pair appear first followed by the 

second values from each pair. For example, suppose that a variable called list stores the following: 
        [3, 8, 4, 9, 7, 2] 

This list has three pairs: (3, 8), (4, 9), and (7, 2).  Thus, the call split_pairs(list) should return the following 

list: 
        [3, 4, 7, 8, 9, 2] 

Notice that this list contains the first values from each pair (3, 4, 7) followed by the second values from each pair (8, 

9, 2).  If there is an extra value that is not part of a pair, then it should be included with the first set of values in the 

new list.  For example, if list stores: 
        [7, 5, 3, 2, 8, 4, 6] 

then the call split_pairs(list) should return: 
        [7, 3, 8, 6, 5, 2, 4] 

The value 6 in the original list is not part of a pair.  Notice that the new list has the first values from each pair (7, 3, 8) 

followed by 6 followed by the second values from each pair (5, 2, 4).   

The function should not construct any extra data structures other than the list to be returned andit should not alter its 

parameter. 
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CSc 110 Sample Midterm Exam #2 Solutions 
 

1. Collections Mystery 

{'plaster', 'wool', 'brick', 'w'} 

{'yellow', 'blue', 'green'} 
{'a', 'p', 'peach', 'apple', 'fruit'} 
{'cat', 'ipl', 'animal', 'c', 'dog'} 

2. Inheritance Mystery 

{1} 

{2, 3, 5, 6} 

{0, 1, 4} 

{0, 1, 2} 

 

3.    Searching and Sorting 

 

(a) Indexes examined: 6, 2, 4, 3  Value returned: -4 

(b) [9, 63, 45, 72, 27, 18, 54, 36] 
 [9, 18, 45, 72, 27, 63, 54, 36] 
 [9, 18, 27, 72, 45, 63, 54, 36] 

(c) [63,   9,   45,  72,   27,  18,  54,  36] 

 [63,   9,   45,  72]  [27,  18,  54,  36] split 

 [63,   9]  [45,  72]  [27,  18] [54,  36] split 

 [63]  [9]  [45] [72]  [27] [18] [54] [36] split 

 [9,  63]  [45,  72]  [18,  27] [36,  54] merge 

 [9,  45,   63,  72]  [18,  27,  36,  54] merge 

 [9,  18,   27,  36,   45,  54,  63,  72] merge 

 

4. String Programming 
         

 def encode(s, n): 

     result = "" 

            for j in range(0, n): 

                for i in range(0, len(s) – j, n): 

                    result += s[i + j] 

     return result 

 

5. List of Lists Programming 

def num_unique(lis): 

    unique = set() 

    for i in range(0, len(lis)): 

        for j in range(0, len(lis[i])): 

            unique.add(lis[i][j]) 

    return len(unique) 
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6. Collections Programming 

 
def grade_stats(lis): 

    grades = {} 

    for grade in lis: 

        if grade in grades: 

            grades[grade] = grades[grade] + 1 

        else: 

            grades[grade] = 1 

    return grades 

 

 

7. Collections Programming 

 
def union(m1, m2): 
    result = {} 

    for key, value in m1.items(): 
        result[key] = value 
    for key, value in m2.items()): 

        if (key in result) 
            result[key] = result.get(key) + value 
        else: 

            result[key] = value 
    return result 

 

8. List Programming 

def longest_sorted_sequence(list): 
    if (len(list) == 0): 
        return 0 

    max = 1 
    count = 1 
    for i in range(1, len(list)): 

        if (list[i] >= list[i - 1]): 
            count += 1 
        else: 

            count = 1 
 
        if (count > max): 

            max = count 
    return max 

 

9. Programming 

        def split_pairs(lis): 

            half = len(lis) // 2 

            result = [0] * len(lis) 

            for i in range(0, len(lis)):  

                if i % 2 == 0: 

                    result[i // 2] = lis[i] 

                elif len(lis) % 2 == 0: 

                    result[i // 2 + half] = list[i] 

                else: 

                    result[i // 2 + half + 1] = list[i] 

            return result 

      


