CSc 110, Spring 2018

Lecture 3: Functions

"In return for an increase in my allowance, | can offer
you free unlimited in-home computer tech support.”

Algorithms

e algorithm: A list of steps for solving a problem.

* Example algorithm: "Bake sugar cookies"

Mix the dry ingredients.

Cream the butter and sugar.

Beat in the eggs.

Stir in the dry ingredients.

Set the oven temperature.

Set the timer for 10 minutes.

Place the cookies into the oven.

Allow the cookies to bake.

Spread frosting and sprinkles onto the cookies.

Problems with algorithms

e lack of structure: Many steps; tough to follow.

* redundancy: Consider making a double batch...

Mix the dry ingredients.

Cream the butter and sugar.

Beat in the eggs.

Stir in the dry ingredients.

Set the oven temperature.

Set the timer for 10 minutes.

Place the first batch of cookies into the oven.
Allow the cookies to bake.

Set the timer for 10 minutes.

Place the second batch of cookies into the oven.
Allow the cookies to bake.

Mix ingredients for frosting.

Structured algorithms

* structured algorithm: Split into coherent tasks.

1 Make the batter.

e Mix the dry ingredients.

e Cream the butter and sugar.
* Beatin the eggs.

e Stirin the dry ingredients.

2 Bake the cookies.

* Set the oven temperature.

e Set the timer for 10 minutes.

* Place the cookies into the oven.
* Allow the cookies to bake.

3 Decorate the cookies.
* Mix the ingredients for the frosting.
e Spread frosting and sprinkles onto the cookies.

Removing redundancy

* A well-structured algorithm can describe repeated tasks with less redundancy.

1 Make the cookie batter.
* Mix the dry ingredients.

2a Bake the cookies (first batch).
e Set the oven temperature.
e Set the timer for 10 minutes.

2b Bake the cookies (second batch).
* Repeat Step 2a

3 Decorate the cookies.

functions

 function: A named group of statements.

* denotes the structure of a program
* eliminates redundancy by code reuse

» procedural decomposition:
dividing a problem into functions

* Writing a function is like adding
a new command to Python.

Function A
= statement
= statement
= Sstatement

Function B
= Statement
= Statement

Function C
= statement
= statement
= statement

Declaring a function

Gives your function a name so it can be executed

* Syntax:

def name () :
statement
statement

statement

e Example:

def print warning() :
print ("This product causes cancer")
print ("in lab rats and humans.")

Calling a function

Executes the function’s code
* Syntax:
name ()

* You can call the same function many times if you like.

* Example:
print warning () #separate multiple words with underscores

* Qutput:

This product causes cancer
in lab rats and humans.

Functions calling functions

def messagel () :

print ("This 1s messagel.")

def messageZ2() :

print ("This is message2.")
messagel ()
print ("Done with messageZ.")

messagel ()
message2 ()
print ("Done with everything.")

* Output:

This
This
This
Done
Done

is messagel.
is message?.
1s messagel.
with message?.
with main.

Control flow

 When a function is called, the program's execution...
* "jumps" into that function, executing its statements, then
* "jumps" back to the point where the function was called.

.
\

messagel ()

message2 ()

print ("Done with mad

def messagel () :

print ("This is messagel.")

N

def message2():

print ("This is message2.")
messagel ()

/@r nt ("Done with message2.")

¥4

def messagel () :
print ("This is messagel.")

Structure of a program

* No code should be placed outside a function. Instead use amain
function.

* The one exception is a call to your main function

def main () :
messagel ()
message? ()
print ("Done with everything.")

def messagel () :
print ("This 1s messagel.")

def message? () :
print ("This 1s message2.")
messagel ()
print ("Done with messageZ.")

main ()

When to use functions (besides main)

* Place statements into a function if:
* The statements are related structurally, and/or
* The statements are repeated.

* You should not create functions for:
* Anindividual print statement.
* Only blank lines.

* Unrelated or weakly related statements.
(Consider splitting them into two smaller functions.)

Functions question

* Write a program to print these figures using functions.

/ \
/ \
\ /

\ /
\ /

\ /
e +

/ \
/ \
| STOP |
\ /

\ /

/ \
/ \
tom - +

Development strategy

First version (unstructured):

() = Create an empty program.
\ /
\ / = Copy the expected output into it, surrounding
A — each line with print syntax.
— = Run it to verify the output.
{ STOP ?
\ /
\ /
/ \
/ \

Program version 1

def main () :

print (" ")
print (" / \\™)
print ("/ \\™)
print ("\\ /")
print (" \\ /™)
print ()

print ("\\ /™)
print (" \\ /™)
print ("+-—-———--—- +'")
print ()

print (" ")
print (" / \\")
print ("/ \\M)
print("| STOP |")
print ("\\ /")
print (" \\ /")
print ()

print (" ")
print (" / \\M)
print ("/ \\™)
print ("+-—-——-——-——- +")

main ()

Development strategy 2

Second version (structured, with redundancy):

/ \
() = Identify the structure of the output.
\ /
')/ = Divide the code into functions based on this
Fommm * structure.
/ \
/ \
| STOP |
\ /
\ /
/ \
/ \

Output structure

// \\ The structure of the output:
\ / = initial "egg" figure
\ / n n g
— = second "teacup" figure
N J = third "stop sign" figure
A ’ « fourth "hat" figure
/ \
/ \ This structure can be represented by functions:
| STOP |
\ / = egg
\ /
— = tea cup
S = stop sign
/ \ m hat

Program version 2

def main():

def

def

egg ()
tea cup()

stop_sign()
hat ()

egg () :
print

tea cup():

print ("\\ /™)
print (" \\ /")
print ("+-—-——-——- +™)
print ()

def stop_sign():
prinT ("’
print ("
print ("/

print ("| STOP

rint ("\\
grlnt " AN
print ()

def hat(%
rin

Development strategy 3

Third version (structured, without redundancy):

»« Identify redundancy in the output, and create
_ functions to eliminate as much as possible.

et ¥ = Add comments to the program.

Output redundancy

/ \
() The redundancy in the output:
\ /
y) = egg top: reused on stop sign, hat
\ / = egg bottom: reused on teacup, stop sign
T i = divider line: used on teacup, hat
/ \
T rop | This redundancy can be fixed by functions:
\ / = egg_top
L/ = egg bottom
m line
/ \
/ \

Program version 3

Suzy Student, CSc 110, Spring 2094
Prints several figures, with methods for structure and redundancy.
def main():

egg ()

tea cup()

stop sign()

hat ()

Draws the top half of an an egg figure.
def egg_top():

print (H n)
print (" / \\")
print ("/ \\™)

Draws the bottom half of an egg figure.
def egg_bottom() :

print ("\\ /™)

print (" \\ /")

Draws a complete egg figure.
def egg():

egg_top ()

egg _bottom()

print ()

Draws a teacup figure.

def tea cup(

)t

egg_bottom()

line()

print ()

Draws a stop sign figure.

def stop sign():

eggTop ()
print ("|

STOP

egg_bottom()

print ()

Draws a figure that looks sort of like a hat.

def hat () :

egg_top (
line ()

Draws a line of dashes.

def line():

print ("+

)

")

