
CSc 110, Spring 2018
Lecture 3: Functions

Algorithms

• algorithm: A list of steps for solving a problem.

• Example algorithm: "Bake sugar cookies"
• Mix the dry ingredients.
• Cream the butter and sugar.
• Beat in the eggs.
• Stir in the dry ingredients.
• Set the oven temperature.
• Set the timer for 10 minutes.
• Place the cookies into the oven.
• Allow the cookies to bake.
• Spread frosting and sprinkles onto the cookies.
• ...

Problems with algorithms

• lack of structure: Many steps; tough to follow.

• redundancy: Consider making a double batch...
• Mix the dry ingredients.
• Cream the butter and sugar.
• Beat in the eggs.
• Stir in the dry ingredients.
• Set the oven temperature.
• Set the timer for 10 minutes.
• Place the first batch of cookies into the oven.
• Allow the cookies to bake.
• Set the timer for 10 minutes.
• Place the second batch of cookies into the oven.
• Allow the cookies to bake.
• Mix ingredients for frosting.
• ...

Structured algorithms

• structured algorithm: Split into coherent tasks.
1 Make the batter.
• Mix the dry ingredients.
• Cream the butter and sugar.
• Beat in the eggs.
• Stir in the dry ingredients.

2 Bake the cookies.
• Set the oven temperature.
• Set the timer for 10 minutes.
• Place the cookies into the oven.
• Allow the cookies to bake.

3 Decorate the cookies.
• Mix the ingredients for the frosting.
• Spread frosting and sprinkles onto the cookies.
...

Removing redundancy

• A well-structured algorithm can describe repeated tasks with less redundancy.

1 Make the cookie batter.
• Mix the dry ingredients.
• ...

2a Bake the cookies (first batch).
• Set the oven temperature.
• Set the timer for 10 minutes.
• ...

2b Bake the cookies (second batch).
• Repeat Step 2a

3 Decorate the cookies.
• ...

functions

• function: A named group of statements.
• denotes the structure of a program

• eliminates redundancy by code reuse

• procedural decomposition:
dividing a problem into functions

• Writing a function is like adding
a new command to Python.

Function A

 statement

 statement

 statement

Function B

 statement

 statement

Function C

 statement

 statement

 statement

Gives your function a name so it can be executed

• Syntax:

def name():
statement
statement
...
statement

• Example:
def print_warning():

print("This product causes cancer")

print("in lab rats and humans.")

Declaring a function

Calling a function

Executes the function’s code

• Syntax:
name()

• You can call the same function many times if you like.

• Example:
print_warning() #separate multiple words with underscores

• Output:

This product causes cancer
in lab rats and humans.

Functions calling functions

def message1():
print("This is message1.")

def message2():
print("This is message2.")
message1()
print("Done with message2.")

message1()
message2()
print("Done with everything.")

• Output:
This is message1.
This is message2.
This is message1.
Done with message2.
Done with main.

• When a function is called, the program's execution...
• "jumps" into that function, executing its statements, then

• "jumps" back to the point where the function was called.

message1()

message2()

print("Done with main.")

...

def message1():

print("This is message1.")

def message2():

print("This is message2.")

message1()

print("Done with message2.")

def message1():

print("This is message1.")

Control flow

Structure of a program

• No code should be placed outside a function. Instead use a main

function.

• The one exception is a call to your main function
def main():

message1()
message2()
print("Done with everything.")

def message1():
print("This is message1.")

def message2():
print("This is message2.")
message1()
print("Done with message2.")

main()

When to use functions (besides main)

• Place statements into a function if:
• The statements are related structurally, and/or

• The statements are repeated.

• You should not create functions for:
• An individual print statement.

• Only blank lines.

• Unrelated or weakly related statements.
(Consider splitting them into two smaller functions.)

Functions question

• Write a program to print these figures using functions.

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

Development strategy

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

First version (unstructured):

 Create an empty program.

 Copy the expected output into it, surrounding
each line with print syntax.

 Run it to verify the output.

Program version 1
def main():

print(" ______")

print(" / \\")

print("/ \\")

print("\\ /")

print(" ______/")

print()

print("\\ /")

print(" ______/")

print("+--------+")

print()

print(" ______")

print(" / \\")

print("/ \\")

print("| STOP |")

print("\\ /")

print(" ______/")

print()

print(" ______")

print(" / \\")

print("/ \\")

print("+--------+")

main()

Development strategy 2

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

Second version (structured, with redundancy):

 Identify the structure of the output.

 Divide the code into functions based on this
structure.

Output structure

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

The structure of the output:

 initial "egg" figure

 second "teacup" figure

 third "stop sign" figure

 fourth "hat" figure

This structure can be represented by functions:

 egg

 tea_cup

 stop_sign

 hat

Program version 2

def main():

egg()

tea_cup()

stop_sign()

hat()

def egg():

print(" ______")

print(" / \\")

print("/ \\")

print("\\ /")

print(" ______/")

print()

def tea_cup():

print("\\ /")

print(" ______/")

print("+--------+")

print()

def stop_sign():
print(" ______")
print(" / \\")
print("/ \\")
print("| STOP |")
print("\\ /")
print(" ______/")
print()

def hat():
print(" ______")
print(" / \\")
print("/ \\")
print("+--------+")

Development strategy 3

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

Third version (structured, without redundancy):

 Identify redundancy in the output, and create
functions to eliminate as much as possible.

 Add comments to the program.

Output redundancy

The redundancy in the output:

 egg top: reused on stop sign, hat

 egg bottom: reused on teacup, stop sign

 divider line: used on teacup, hat

This redundancy can be fixed by functions:

 egg_top

 egg_bottom

 line

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/

| STOP |

\ /

______/

/ \

/ \

+--------+

Program version 3

Suzy Student, CSc 110, Spring 2094

Prints several figures, with methods for structure and redundancy.

def main():

egg()

tea_cup()

stop_sign()

hat()

Draws the top half of an an egg figure.

def egg_top():

print(" ______")

print(" / \\")

print("/ \\")

Draws the bottom half of an egg figure.

def egg_bottom():

print("\\ /")

print(" ______/")

Draws a complete egg figure.

def egg():

egg_top()

egg_bottom()

print()

Draws a teacup figure.

def tea_cup():

egg_bottom()

line()

print()

Draws a stop sign figure.

def stop_sign():

eggTop()

print("| STOP |")

egg_bottom()

print()

Draws a figure that looks sort of like a hat.

def hat():

egg_top()

line()

Draws a line of dashes.

def line():

print("+--------+")

