
CSc 110, Spring 2018
Lecture 5: The for Loop and user input

Adapted from slides by Marty Stepp and Stuart Reges

Variables

• variable: A piece of the computer's memory that is given a name and type,
and can store a value.
• Like preset stations on a car stereo, or cell phone speed dial:

• Steps for using a variable:
• Declare/initialize it - state its name and type and store a value into it

• Use it - print it or use it as part of an expression

Declaration and assignment

• variable declaration and assignment:
Sets aside memory for storing a value and stores a value into a variable.

• Variables must be declared before they can be used.
• The value can be an expression; the variable stores its result.

• Syntax:

name = expression

• zipcode = 90210

• myGPA = 1.0 + 2.25

zipcode 90210

myGPA 3.25

Using variables

• Once given a value, a variable can be used in expressions:

x = 3 # x is 3

y = 5 * x - 1 # now y is 14

• You can assign a value more than once:

x = 3 # 3 here

x = 4 + 7 # now x is 11

x 3x 11

Assignment and algebra

• Assignment uses = , but it is not an algebraic equation.

• = means, "store the value at right in variable at left"

• The right side expression is evaluated first,
and then its result is stored in the variable at left.

• What happens here?

x = 3

x = x + 2 # ???

x 3x 5

Receipt question

Improve the receipt program using variables.

def main():

Calculate total owed, assuming 8% tax / 15% tip

print("Subtotal:")

print(38 + 40 + 30)

print("Tax:")

print((38 + 40 + 30) * .08)

print("Tip:")

print((38 + 40 + 30) * .15)

print("Total:")

print(38 + 40 + 30 + (38 + 40 + 30) * .15 + (38 + 40 + 30) * .08)

Printing a variable's value

• Use a comma to print a string and a variable's value on one line.

• grade = (95.1 + 71.9 + 82.6) / 3.0

print("Your grade was", grade)

students = 11 + 17 + 4 + 19 + 14

print("There are", students,

"students in the course.")

• Output:

Your grade was 83.2

There are 65 students in the course.

Receipt answer

def main():

Calculate total owed, assuming 8% tax / 15% tip

subtotal = 38 + 40 + 30 # int

tax = subtotal * .08 # float

tip = subtotal * .15 # float

total = subtotal + tax + tip # float

print("Subtotal:", subtotal)

print("Tax:", tax)

print("Tip:", tip)

print("Total:", total)

Getting rid of repetition

• Functions

• Variables

• String Multiplication
• Allows you to print multiple occurrences of the same string without typing

them all out

print("meow" * 3) # meowmeowmeow

• What if you want to repeat function calls?

Repetition with for loops

• So far, repeating an action results in redundant code:
make_batter()
bake_cookies()
bake_cookies()
bake_cookies()
bake_cookies()
bake_cookies()
frost_cookies()

• Python's for loop statement performs a task many times.
mix_batter()

for i in range(1, 6): # repeat 5 times
bake_cookies()

frost_cookies()

for loop syntax

for variable in range (start, stop):
statement
statement
...
statement

• Set the variable equal to the start value

• Repeat the following:

• Check if the variable is less than the stop. If not, stop.

• Execute the statements.

• Increase the variable's value by 1.

body

header

Control structures

• Control structure: a programming construct that affects the flow of a
program's execution

• Controlled code may include one or more statements

• The for loop is an example of a looping control structure

Repetition over a range

print("1 squared = " + str(1 * 1))
print("2 squared = " + str(2 * 2))
print("3 squared = " + str(3 * 3))
print("4 squared = " + str(4 * 4))
print("5 squared = " + str(5 * 5))
print("6 squared = " + str(6 * 6))

• Intuition: "I want to print a line for each number from 1 to 6"

• The for loop does exactly that!

for i in range(1, 7):

print(str(i) "squared = " str(i * i))

• "For each integer i from 1 through 6, print ..."

Loop walkthrough

for i in range(1, 5):

print(str(i) + " squared = " + str(i * i))

print("Whoo!")

Output:

1 squared = 1

2 squared = 4

3 squared = 9

4 squared = 16

Whoo!

Multi-line loop body

print("+----+")
for i in range(1, 4):

print("\\ /")
print("/ \\")

print("+----+")

• Output:
+----+
\ /
/ \
\ /
/ \
\ /
/ \
+----+

Expressions for counter

high_temp = 5

for i in range(-3, high_temp // 2 + 1):

print(i * 1.8 + 32)

• Output:
26.6
28.4
30.2
32.0
33.8
35.6

Rocket Exercise
• Write a method that produces the following output:

T-minus 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
blastoff!
The end.

print (' ', end='')

• Adding ,end='' allows you to print without moving to the next
line
• allows you to print partial messages on the same line

high_temp = 5

for i in range(-3, high_temp // 2 + 1):

print(i * 1.8 + 32, end=' ')

• Output:
26.6 28.4 30.2 32.0 33.8 35.6

• Either concatenate ' ' to separate the numbers or set end=' '

Changing step size

• Add a third number to the end of range, this is the step size
• A negative number will count down instead of up

print("T-minus ")

for i in range(10, 0, -1):

print(str(i) + ", ", end="")

print("blastoff!")

print("The end.")

• Output:

T-minus 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, blastoff!

The end.

Constants

• constant: A fixed value visible to the whole program.

• value should only be set only at declaration; shouldn't be reassigned

• Syntax:
• Just like declaring a normal variable:

name = value

• name is usually in ALL_UPPER_CASE

• Examples:
DAYS_IN_WEEK = 7

INTEREST_RATE = 3.5

SSN = 658234569

Constants and figures

• Consider the task of drawing the following scalable figure:

+/\/\/\/\/\/\/\/\/\/\+

| |

| |

| | Multiples of 5 occur many times
| |

| |

+/\/\/\/\/\/\/\/\/\/\+

+/\/\/\/\+

| |

| | The same figure at size 2
+/\/\/\/\+

Constant tables
SIZE = ...

• What equation would cause the code to print:
2 7 12 17 22

• To see patterns, make a table of SIZE and the numbers.
• Each time SIZE goes up by 1, the number should go up by 5.

• But SIZE * 5 is too great by 3, so we subtract 3.

SIZE number to print 5 * SIZE

1 2 5

2 7 10

3 12 15

4 17 20

5 22 25

5 * SIZE - 3

2

7

12

17

22

Constant tables question

• What equation would cause the code to print:
17 13 9 5 1

• Let's create the constant table together.
• Each time SIZE goes up 1, the number printed should ...

• But this multiple is off by a margin of ...

SIZE number to print

1 17

2 13

3 9

4 5

5 1

-4 * SIZE -4 * SIZE+ 21

-4 17

-8 13

-12 9

-16 5

-20 1

-4 * SIZE

-4

-8

-12

-16

-20

Interactive programs

interactive program: Reads input from the console.

• While the program runs, it asks the user to type input.

• The input typed by the user is stored in variables in the
code.

• Can be tricky; users are unpredictable and misbehave.

• But interactive programs have more interesting behavior.

input

• input: An function that can read input from the user.

• Using an input object to read console input:

name = input(prompt)

• Example:

name = input("type your name: ")

• The variable name will store the value the user typed in

input example

def main():

age = input("How old are you? ")

years = 65 - age

print(years, " years until retirement!")

• Console (user input underlined):

How old are you? 29

age 29

Traceback (most recent call last):

File "<pyshell#13>", line 1, in <module>

print(65 - age)

TypeError: unsupported operand type(s) for -:

'int' and 'str'

input example

def main():

age = int(input("How old are you? "))

years = 65 - age

print(years, "years until retirement!")

• Console (user input underlined):

How old are you?

36 years until retirement!

29

age 29

years 36

