CSc 110, Spring 2018

Lecture 7: input and Constants
Adapted from slides by Marty Stepp and Stuart Reges

Redundancy Club

Listen up! The first rule of Redundancy Club is you do not
talk about Redundancy Chub.

The second rule of Redundancy Chub is you do NOT talk
about Redundancy Chub

£ 185 &

Constants and figures

* Consider the task of drawing the following scalable figure:

+/N/NININININININN/ N+

| |
| |
| | Multiples of 5 occur many times
| |
| |
+/N/N/N/N/N/N/N/N/N/\+

+/N/N/N/\+
| |

| | The same figure at size 2

+/\N/\N/\/\+

Constant tables

SIZE = ...

 What equation would cause the code to print:
2 1 12 17 22

* To see patterns, make a table of SIZE and the numbers.

 Eachtime SIZE goes up by 1, the number should go up by 5.
e But SIZE * 5istoo great by 3, so we subtract 3.

SIZE |numberto print|5 * SIZE |5 * SIZE - 3
1 2 5 2
2 10
3 12 15 12
4 17 20 17
5 22 25 22

Constant tables question

* What equation would cause the code to print:
17 13 9 51

e Let's create the constant table together.
 Eachtime SIZE goes up 1, the number printed should ...
e But this multiple is off by a margin of ...

SIZE | number to print -4 * SIZE -4 * STIzE+ 21
1 17 -4 17
2 13 -8 13
3 -12
4 5 -16 5
5 -20

Drawing complex figures

* Use nested for loops to produce the following output.

* Why draw ASCII art?
* Real graphics require a lot of finesse f================%
* ASCII art has complex patterns
e Can focus on the algorithms

Development strategy

* Recommendations for managing complexity:

1. Design the program (think about steps or methods needed).

* write an English description of steps required

* use this description to decide the functions f========s=======i
| <><> |
| <>L L L. |

2. Create a table of patterns of characters | <> <>

* use table to write your for loops (<> <>
<> e e <> |
| <> ... <> |
| <>. L. <> |
| <><> |

f================f

1. Pseudo-code

* pseudo-code: An English description of an algorithm.

* Example: Drawing a 12 wide by 7 tall box of stars

print 12 stars.

for (each of 5 lines) :
print a star.
print 10 spaces.
print a star.

print 12 stars.

R R e A A g b i i b g ¢
* *
* *
* *
* *
* *
* *

IR A i A g b i i ¢

Pseudo-code algorithm

1. Line
e #,16=, #

2. Top half
.

e spaces (decreasing)
. <>

e dots (increasing)
. <>

* spaces (same as above)

3. Bottom half (top half upside-down)

4. Line
e #,16=, #

Functions from pseudocode

def main () :
line ()
top half ()
bottom half ()
line ()

def top half():
for line in range(l, 5):
contents of each line

def bottom half () {
for line in range(l, 5):
contents of each line

def line () :
...

2. Tables

* A table for the top half:

* Compute spaces and dots expressions from line number

line |spaces |line*-2+8 |dots |4 *line -4
1 6 6 0 0

2 4 4 4 4

3 2 2 8 8

4 0 0 12 12

3. Writing the code

e Useful questions about the top half:
 Number of (nested) loops per line?

Partial solution

Prints the expanding pattern of <>
def top half():
for line in range(l, 5):
print (" | ", end:" ")

for space in range(l, line *
print (" ", end:"")

print ("<>", end="")

for dot in range(l, line * 4
print(".", end="")

print ("<>", end="")
for space in range(l, line *

print(" n, end:nn)

print("l")

for the top half of the figure.

-2 + 9):

-2 + 8):

Scaling the mirror

* Let's modify our Mirror program so that it can scale.
e The current mirror (left) is at size 4; the right is at size 3.

* We'd like to structure the code so we can scale the figure by changing

Complex figure w/ constant

* Modify the Mirror code to be resizable using a constant.
A mirror of size 3:

A mirror of size 4: N —
PSS oo
| <> <> | | <> L <>
| <> <> (<> <>
<>ttt <> | [<>, <>
| <> it i e <> | | <>l .<>
| <t e e e e e <> | | <S> |
| <>..0.0.<3> | e —
| <><> |

ff================#

Loop tables and constant

* Let's modify our loop table to use SIZE
* This can change the amount added in the loop expression

SIZE | line spaces dots
4 1,2,3,416,4,2,0 0,4,8,12
3 1,2,3 4,2,0 0,4,8

p================4 p============#

| <> | | <><> |

| <> <> | | <> <> |

| D <> | [<>........ <> |

<> i ittt e e e <> [<>........ <> |

<> i i it i e oo <> | <> <> |

| <> ... <> | <><> |

| <>l | f============¢f

| <><> |

fommmmmmmmmmmmaay

Partial solution

SIZE = 4;

Prints the expanding pattern of <> for the top half of the figure.
def top half () {
for line in range(l, SIZE):

print (" | ", endzﬂ ")
for space in range(l, line * -2 + (2*SIZE) + 1):
print (" ", endzﬂ ")

print ("<>", end="")

for dot in range(l, line * 4 - 3):
print (".", end="")

print("<>", end:"")
for space in range(l, line * -2 + (2*SIZE) + 1):

print(" n, end:nn)

print (u | u)

Observations about constant

* The constant can change the "intercept" in an expression.
* Usually the "slope" is unchanged.

SIZE = 4;

for space in range(l, line * -2 + (2 * SIZE)):

print(" ", end:"")

* It doesn't replace every occurrence of the original value.

for dot in range(l, line * 4 - 4 + 1):
print (u . ", end=" n)

I ———
Interactive programs

interactive program: Reads input from the console.

* While the program runs, it asks the user to type input.

* The input typed by the user is stored in variables in the
code.

e Can be tricky; users are unpredictable and misbehave.
* But interactive programs have more interesting behavior.

input
* input: An function that can read input from the user.

e Using an input object to read console input:

name = 1input (prompt)

* Example:

name = 1input ("type your name: ")

* The variable name will store the value the user typed in

input example

def main () :

age = input ("How old are you? ")
years = 65 - age
print (years, " years until retirement!")

e Console (user input underlined):

How old are you? 29

age

29

Traceback (most recent call last):

File "<pyshell#13>", line 1, in <module>
print (65 - age)
TypeError: unsupported operand type(s) for -:

'int'

and

'str'

input example

def main () :

age = int(input ("How old are you? "))

years = 65 - age

print (years, "years until retirement!")

e Console (user input underlined):

How old are you? 29

36 years until retirement!

age

years

29

36

