
CSc 110, Spring 2018
Lecture 7: input and Constants

Adapted from slides by Marty Stepp and Stuart Reges

Constants and figures

• Consider the task of drawing the following scalable figure:

+/\/\/\/\/\/\/\/\/\/\+

| |

| |

| | Multiples of 5 occur many times
| |

| |

+/\/\/\/\/\/\/\/\/\/\+

+/\/\/\/\+

| |

| | The same figure at size 2
+/\/\/\/\+

Constant tables
SIZE = ...

• What equation would cause the code to print:
2 7 12 17 22

• To see patterns, make a table of SIZE and the numbers.
• Each time SIZE goes up by 1, the number should go up by 5.

• But SIZE * 5 is too great by 3, so we subtract 3.

SIZE number to print 5 * SIZE

1 2 5

2 7 10

3 12 15

4 17 20

5 22 25

5 * SIZE - 3

2

7

12

17

22

Constant tables question

• What equation would cause the code to print:
17 13 9 5 1

• Let's create the constant table together.
• Each time SIZE goes up 1, the number printed should ...

• But this multiple is off by a margin of ...

SIZE number to print

1 17

2 13

3 9

4 5

5 1

-4 * SIZE -4 * SIZE+ 21

-4 17

-8 13

-12 9

-16 5

-20 1

-4 * SIZE

-4

-8

-12

-16

-20

Drawing complex figures

• Use nested for loops to produce the following output.

• Why draw ASCII art?
• Real graphics require a lot of finesse

• ASCII art has complex patterns

• Can focus on the algorithms

#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |

| <><> |

#================#

Development strategy

• Recommendations for managing complexity:

1. Design the program (think about steps or methods needed).

• write an English description of steps required

• use this description to decide the functions

2. Create a table of patterns of characters

• use table to write your for loops

#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |

| <><> |

#================#

1. Pseudo-code

• pseudo-code: An English description of an algorithm.

• Example: Drawing a 12 wide by 7 tall box of stars

print 12 stars.

for (each of 5 lines) :

print a star.

print 10 spaces.

print a star.

print 12 stars.

* *
* *
* *
* *
* *

Pseudo-code algorithm

1. Line
• # , 16 =, #

2. Top half
• |

• spaces (decreasing)
• <>

• dots (increasing)
• <>

• spaces (same as above)
• |

3. Bottom half (top half upside-down)

4. Line
• # , 16 =, #

#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |

| <><> |

#================#

Functions from pseudocode

def main():

line()

top_half()

bottom_half()

line()

def top_half():

for line in range(1, 5):

contents of each line

def bottom_half() {

for line in range(1, 5):

contents of each line

def line():

...

2. Tables

• A table for the top half:
• Compute spaces and dots expressions from line number

line spaces dots

1 6 0

2 4 4

3 2 8

4 0 12

line spaces line * -2 + 8 dots 4 * line - 4

1 6 6 0 0

2 4 4 4 4

3 2 2 8 8

4 0 0 12 12

#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |

| <><> |

#================#

3. Writing the code

• Useful questions about the top half:
• Number of (nested) loops per line?

#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |

| <><> |

#================#

Partial solution

Prints the expanding pattern of <> for the top half of the figure.

def top_half():

for line in range(1, 5):

print("|", end="")

for space in range(1, line * -2 + 9):

print(" ", end="")

print("<>", end="")

for dot in range(1, line * 4 - 3):

print(".", end="")

print("<>", end="")

for space in range(1, line * -2 + 8):

print(" ", end="")

print("|")

Scaling the mirror
• Let's modify our Mirror program so that it can scale.

• The current mirror (left) is at size 4; the right is at size 3.

• We'd like to structure the code so we can scale the figure by changing
the code in just one place.

#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |

| <><> |

#================#

#============#

| <><> |

| <>....<> |

|<>........<>|

|<>........<>|

| <>....<> |

| <><> |

#============#

Complex figure w/ constant

• Modify the Mirror code to be resizable using a constant.

A mirror of size 4:
#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |

| <><> |

#================#

A mirror of size 3:

#============#

| <><> |

| <>....<> |

|<>........<>|

|<>........<>|

| <>....<> |

| <><> |

#============#

Loop tables and constant
• Let's modify our loop table to use SIZE

• This can change the amount added in the loop expression

#================# #============#

| <><> | | <><> |

| <>....<> | | <>....<> |

| <>........<> | |<>........<>|

|<>............<>| |<>........<>|

|<>............<>| | <>....<> |

| <>........<> | | <><> |

| <>....<> | #============#

| <><> |

#================#

SIZE line spaces dots

4 1,2,3,4 6,4,2,0 0,4,8,12

3 1,2,3 4,2,0 0,4,8

Partial solution
SIZE = 4;

Prints the expanding pattern of <> for the top half of the figure.
def top_half() {

for line in range(1, SIZE):
print("|", end="")

for space in range(1, line * -2 + (2*SIZE) + 1):
print(" ", end="")

print("<>", end="")

for dot in range(1, line * 4 - 3):
print(".", end="")

print("<>", end="")

for space in range(1, line * -2 + (2*SIZE) + 1):
print(" ", end="")

print("|")

Observations about constant

• The constant can change the "intercept" in an expression.
• Usually the "slope" is unchanged.

SIZE = 4;

for space in range(1, line * -2 + (2 * SIZE)):

print(" ", end="")

• It doesn't replace every occurrence of the original value.

for dot in range(1, line * 4 – 4 + 1):

print(".", end="")

Interactive programs

interactive program: Reads input from the console.

• While the program runs, it asks the user to type input.

• The input typed by the user is stored in variables in the
code.

• Can be tricky; users are unpredictable and misbehave.

• But interactive programs have more interesting behavior.

input

• input: An function that can read input from the user.

• Using an input object to read console input:

name = input(prompt)

• Example:

name = input("type your name: ")

• The variable name will store the value the user typed in

input example

def main():

age = input("How old are you? ")

years = 65 - age

print(years, " years until retirement!")

• Console (user input underlined):

How old are you? 29

age 29

Traceback (most recent call last):

File "<pyshell#13>", line 1, in <module>

print(65 - age)

TypeError: unsupported operand type(s) for -:

'int' and 'str'

input example

def main():

age = int(input("How old are you? "))

years = 65 - age

print(years, "years until retirement!")

• Console (user input underlined):

How old are you?

36 years until retirement!

29

age 29

years 36

