
CSc 110, Spring 2018
Lecture 14: Booleans and Strings

Adapted from slides by Marty Stepp and Stuart Reges

Exercise: Logical questions

• What is the result of each of the following expressions?

x = 42

y = 17

z = 25

• y < x and y <= z
• x % 2 == y % 2 or x % 2 == z % 2
• x <= y + z and x >= y + z
• not(x < y and x < z)
• (x + y) % 2 == 0 or not((z - y) % 2 == 0)

• Answers: True, False, True, True, False

Type bool

• bool: A logical type whose values are True and False.
• A logical test is actually a Boolean expression.
• Like other types, it is legal to:

• create a bool variable
• pass a bool value as a parameter
• return a bool value from function
• call a function that returns a bool and use it as a test

minor = age < 21
is_prof = "Prof" in name
loves_csc = True

allow only CS-loving students over 21
if minor or is_prof or not loves_csc:

print("Can't enter the club!")

Returning bool

def is_prime(n):

factors = 0;

for i in range(1, n + 1):

if (n % i == 0):

factors += 1

if factors == 2:

return True

else:

return False

• Calls to functions returning bool can be used as tests:
if is_prime(57):

...

Is this good style?

"Boolean Zen", part 1

• Students new to boolean often test if a result is True:

if is_prime(57) == True: # bad

...

• But this is unnecessary and redundant. Preferred:

if is_prime(57): # good

...

• A similar pattern can be used for a False test:

if is_prime(57) == False: # bad

if not is_prime(57): # good

"Boolean Zen", part 2

• Functions that return bool often have an
if/else that returns True or False:

def both_odd(n1, n2):

if n1 % 2 != 0 and n2 % 2 != 0:

return True

else:

return False

• But the code above is unnecessarily verbose.

Solution w/ bool variable

• We could store the result of the logical test.

def both_odd(n1, n2):

test = (n1 % 2 != 0 and n2 % 2 != 0)

if test: # test == True

return True

else: # test == False

return False

• Notice: Whatever test is, we want to return that.

• If test is True, we want to return True.

• If test is False, we want to return False.

Solution w/ "Boolean Zen"

• Observation: The if/else is unnecessary.
• The variable test stores a bool value;

its value is exactly what you want to return. So return that!

def both_odd(n1, n2):

test = (n1 % 2 != 0 and n2 % 2 != 0)

return test

• An even shorter version:
• We don't even need the variable test.

We can just perform the test and return its result in one step.

def both_odd(n1, n2):

return (n1 % 2 != 0 and n2 % 2 != 0)

"Boolean Zen" template

• Replace

def name(parameters):
if test:

return True

else:

return False

•with

def name(parameters):
return test

Improve the is_prime function

• How can we fix this code?
def is_prime(n):

factors = 0;

for i in range(1, n + 1):

if n % i == 0:

factors += 1

if factors != 2:

return False

else:

return True

De Morgan's Law

• De Morgan's Law: Rules used to negate boolean tests.
• Useful when you want the opposite of an existing test.

• Example:

Original Expression Negated Expression Alternative

a and b not a or not b not(a and b)

a or b not a and not b not(a or b)

Original Code Negated Code
if x == 7 and y > 3:

...

if x != 7 or y <= 3:

...

Boolean practice questions

• Write a function named is_vowel that returns whether a str is a
vowel (a, e, i, o, or u), case-insensitively.
• is_vowel("q") returns False
• is_vowel("A") returns True
• is_vowel("e") returns True

• Change the above function into an is_non_vowel that returns
whether a str is any character except a vowel.
• is_non_vowel("q") returns True
• is_non_vowel("A") returns False
• is_non_vowel("e") returns False

Boolean practice answers

Enlightened version. I have seen the true way (and false way)

def is_vowel(s):

return s == 'a' or s == 'A' or s == 'e' or s == 'E' or s =='i' or s == 'I'

or s == 'o' or s == 'O' or s == 'u' or s =='U'

Enlightened "Boolean Zen" version

def is_non_vowel(s):

return not(s == 'a') and not(s == 'A') and not(s == 'e') and not(s == 'E')

and not(s =='i') and not(s == 'I') and not(s == 'o') and

not(s == 'O') and not(s == 'u') and not(s =='U')

or, return not is_vowel(s)

Strings

• string: a type that stores a sequence of text characters.

name = "text"

name = expression

• Examples:

name = "Daffy Duck"

x = 3

y = 5

point = "(" + str(x) + ", " + str(y) + ")"

Indexes

• Characters of a string are numbered with 0-based indexes:

name = "Ultimate"

• First character's index : 0

• Last character's index : 1 less than the string's length

index 0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1

character U l t i m a t e

Accessing characters

• You can access a character with string[index]:
name = "Merlin"

print(name[0])

Output: M

Accessing substrings

• Syntax:

part = string[start:stop]

• Example:
s = "Merlin"

mid = [1:3] # er

• If you want to start at the beginning you can leave off start
mid = [:3] # Mer

• If you want to start at the end you can leave off the stop
mid = [1:] # erlin

String methods

• These methods are called using the dot notation below:

starz = "Biles & Manuel"
print(starz.lower()) # biles & manuel

Method name Description

find(str) index where the start of the given string
appears in this string (-1 if not found)

substring(index1, index2)
or
substring(index1)

the characters in this string from index1
(inclusive) to index2 (exclusive);

if index2 is omitted, grabs till end of string

lower() a new string with all lowercase letters

upper() a new string with all uppercase letters

String method examples

index 012345678901
s1 = "Allison Obourn"
s2 = "Merlin The Cat"

print(s1.find("o")) # 5
print(s2.lower()) # "merlin the cat"

• Given the following string:

index 012345678901234567890123
book = "Building Python Programs"

• How would you extract the word "Python" ?

Modifying strings

• String operations and functions like lowercase build and return a
new string, rather than modifying the current string.

s = "Aceyalone"

s.upper()

print(s) # Aceyalone

• To modify a variable's value, you must reassign it:

s = "Aceyalone"

s = s.upper()
print(s) # ACEYALONE

Name border

• Prompt the user for full name

• Draw out the pattern to the left

• This should be resizable. Size 1 is shown and size 2
would have the first name twice followed by last
name twice

ALLISON

LLISON

LISON

ISON

SON

ON

N

A

AL

ALL

ALLI

ALLIS

ALLISO

ALLISON

OBOURN

BOURN

OURN

URN

RN

N

O

OB

OBO

OBOU

OBOUR

OBOURN

Other String operations - length

• Syntax:

length = len(string)

• Example:

s = "Merlin"

count = len(s) # 6

Looping through a string

• The for loop through a string using range:

major = "CSc"

for letter in range(0, len(major)):

print(major[letter])

• You can also use a for loop to print or examine each character without range.

major = "CSc"

for letter in major:

print(letter)

Output:
C

S

c

String tests

name = "Voldermort"

if name.startswith("Vol"):

print("He who must not be named")

Method Description

startswith(str) whether one contains other's characters at start

endswith(str) whether one contains other's characters at end

• The in keyword can be used to test if a string contains another string.

example: "er" in name # true

String question

• A Caesar cipher is a simple encryption where a message is encoded by
shifting each letter by a given amount.
• e.g. with a shift of 3, A  D, H  K, X  A, and Z  C

• Write a program that reads a message from the user and performs a
Caesar cipher on its letters:

Your secret message: Brad thinks Angelina is cute

Your secret key: 3

The encoded message: eudg wklqnv dqjholqd lv fxwh

Strings and ints

• All char values are assigned numbers internally by the computer, called
ASCII values.

• Examples:
'A' is 65, 'B' is 66, ' ' is 32
'a' is 97, 'b' is 98, '*' is 42

• One character long Strings and ints can be converted to each other
ord('a') is 97, chr(103) is 'g'

• This is useful because you can do the following:
chr(ord('a' + 2)) is 'c'

