CSc 110, Spring 2018

Lecture 14: Booleans and Strings
Adapted from slides by Marty Stepp and Stuart Reges

I WAS FASCINATED BY LOCKSAS | | AND A LOCKINVITES YOU TO | | T ADMIRED HARRY HOUDINI, | | SURE, SOME OF IT WAS FAKERY
A KID. T LOVED HOW THEY TURNED | | TRY TO OPEN IT. IT'S THE | | HOWHE (OULD OPEN ANY LOCK | | AND SHOWMANSHIP. BUT I STILL
INFORMATION AND PATTERNS INTO | | HACKER INSTINCT. ONLY YOUR | | AND FREE HIMSELF FROM | | WOMDER HOW HE S0 CONSISTENTLY

PHYSICAL STRENGTH, WHY DOES | [JENORANCE: STANDS INTHE WaY im RESTRANT. AH~ Rasi ESCAPED HANDCUFFS.

v MY SCRIPT | [IsPRsING
KEEP DYING? 4% THE SPACES.

Exercise: Logical questions

* What is the result of each of the following expressions?

X = 42 BooLeEAN HAIR Lo&lC
y = 17 A 3
oo Q@
*y < x and y <= z
X $ 2 ==y %$20rx%2==12%2 L) Ag) Aa)
*x <=y + z and x > y + z AND OR XOR,
*not(x < y and x < z)
* (x +vy) $ 2 ==0o0or not((z - y) % 2 == 0)

* Answers: True, False, True, True, False

Type bool

* bool: A logical type whose values are True and False.
* Alogical test is actually a Boolean expression.
* Like other types, it is legal to:
e create a bool variable
* pass abool value as a parameter
* return abool value from function
e call a function that returns a bool and use it as a test

minor = age < 21
1s prof = "Prof" in name
loves csc = True

allow only CS-loving students over 21
1f minor or 1sTprof or not loves csc:
print ("Can enter the club!™)

Returning bool

def 1s prime (n):
factors = 0;
for 1 1n range(l, n + 1):
if (n % 1 == 0):
factors += 1

Is this good style?

if factors == 2:
return True
else:
return False

* Calls to functions returning boo1l can be used as tests:

if is prime (57):

"Boolean Zen", part 1

e Students new to boolean often test if aresultis True:

if is prime(57) == True: # bad

e But this is unnecessary and redundant. Preferred:
if is_prime(57): # good

* A similar pattern can be used for a False test:

if is_prime(57) == False: # bad
if not is prime(57): # good

"Boolean Zen", part 2

 Functions that return bool often have an
1f/else thatreturns True or False:

def both odd(nl, n2):
ifnl $2 !'=0andn2 $ 2 '=0:
return True
else:
return False

* But the code above is unnecessarily verbose.

Solution w/ boo1l variable

* We could store the result of the logical test.

def both odd(nl, n2):

test = (n1 $ 2 !'= 0 and n2 % 2 != 0)
if test: # test == True

return True
else: # test == False

return False

* Notice: Whatever test is, we want to return that.
 |If testis True, we want to return True.
* [ftestisFalse, we want to return False.

Solution w/ "Boolean Zen"

* Observation: The i £ /else is unnecessary.

 The variable test stores a bool value;
its value is exactly what you want to return. So return that!
def both odd(nl, n2):
=

test = (nl % 2
return test

0O and n2 % 2 != 0)

* An even shorter version:

 We don't even need the variable test.
We can just perform the test and return its result in one step.

def both odd(nl,

_ nz2) :
return (nl1 $ 2 !=

O and n2 $ 2 '= 0)

"Boolean Zen" template

* Replace
def name (parameters) :
1f test:
return True
else:

return False

e With

def name (parameters) :
return test

Improve the 1s prime function

* How can we fix this code?

def 1s prime(n):
factors = 0;
for 1 1n range(l, n + 1):
if n % 1 ==
factors += 1

if factors != 2:
return False
else:
return True

De Morgan's Law

* De Morgan's Law: Rules used to negate boolean tests.
* Useful when you want the opposite of an existing test.

Original Expression Negated Expression Alternative

a and b not a or not b not (a and b)
a or b not a and not b not (a or Db)
* Example:
Original Code Negated Code

if x == 7 and y > 3: if x '= 7 or y <= 3:

Boolean practice questions

 Write a function named is vowel that returns whethera strisa
vowel (a, e, i, 0, or u), case-insensitively.
* 1s vowel ("g") returns False
* 1s vowel ("A") returns True
* 1s vowel ("e") returns True

* Change the above function intoan is non vowel that returns
whether a str is any character except a vowel.
* 1s non vowel ("g") returns True
* 1s non vowel ("A") returns False
* 1s non vowel ("e") returns False

Boolean practice answers

Enlightened version. I have seen the true way (and false way)
def is vowel (s):
return s == 'a' or s == 'A' or s == 'e' or s == 'E' or s =='1i' or s == 'I'
or s == 'o' or s == 'O'" or s == 'u' or s =='U"'

Enlightened "Boolean Zen" version
def i1s non vowel (s):

return not(s == 'a') and not(s == 'A') and not(s == 'e') and not(s == 'E'")
and not(s =='i') and not(s == 'I') and not(s == 'o') and
not(s == '0O') and not(s == 'u') and not(s =='U")

or, return not is_vowel (s)

Strings

e string: a type that stores a sequence of text characters.

name = "text"
name = expression

* Examples:
name = "Daffy Duck"
X = 3
y = 5
point = "(" + str(x) + ", " + str(y) + ")"

Indexes

e Characters of a string are numbered with 0-based indexes:

name = "Ultimate"

index 0 1 2 3 4 5 6 7
-8(-7|1-6|-5|-4)|-3]|-2]-1
character| U 1 t i m a t e

* First character'sindex: 0
e Last character'sindex : 1 less than the string's length

e
Accessing characters

* You can access a character with string [index] :
name = "Merlin"
print (name[0])

Output: M

Accessing substrings

* Syntax:
part = string[start:stop]

* Example:
s = "Merlin"
mid = [1:3] # er

* |f you want to start at the beginning you can leave off start
mid = [:3] # Mer

* |f you want to start at the end you can leave off the stop
mid = [1:] # erlin

String methods

Method name

Description

find (str)

index where the start of the given string
appears in this string (-1 if not found)

substring (indexl, index2)

or
substring (indexl)

the characters in this string from index1
(inclusive) to index2 (exclusive);

if index2 is omitted, grabs till end of string

lower ()

a new string with all lowercase letters

upper ()

a new string with all uppercase letters

* These methods are called using the dot notation below:

starz = "Biles & Manuel"
biles & manuel

print (starz.lower())

String method examples

index 012345678901

sl = "Allison Obourn"

s2 = "Merlin The Cat"

print (sl.£find ("o")) # 5

print (s2.lower ()) # "merlin the cat"”

* Given the following string:

index 012345678901234567890123
book = "Building Python Programs"

* How would you extract the word "Python" ?

Modifying strings

e String operations and functions like lowercase build and return a
new string, rather than modifying the current string.

s = "Acevyalone"
s .upper ()
print (s) # Aceyalone

* To modify a variable's value, you must reassign it:

s = "Aceyalone"
S = s.upper /()
print (s) # ACEYALONE

ALLISON
LLISON
LISON
ISON
SON

ON

N

A

AL

ALL

ALLI
ALLIS
ALLISO
ALLISON
OBOURN
BOURN
OURN
URN

RN

N

0}

OB

0BO
OoBOU
OBOUR
OBOURN

Name border

* Prompt the user for full name
* Draw out the pattern to the left

* This should be resizable. Size 1 is shown and size 2
would have the first name twice followed by last
name twice

e
Other String operations - length

* Syntax:
length = len(string)

* Example:
s = "Merlin"

count = len (s) # 6

Looping through a string

* The for loop through a string using range:

major = "CSc"
for letter in range (0, len(major)) :
print (major[letter])

* You can also use a for loop to print or examine each character without range.

major = "CSc"
for letter 1n major:
print (letter)

Output:
C
S
C

String tests

Method Description
startswith (str) whether one contains other's characters at start
endswith (str) whether one contains other's characters at end
name = "Voldermort"

1f name.startswith ("Vol") :

print ("He who must not be named")

* The in keyword can be used to test if a string contains another string.

example: "er" in name # true

String question

* A Caesar cipher is a simple encryption where a message is encoded by
shifting each letter by a given amount.

* e.g.withashiftof3, A—->D, H>K, X—>A, andZ—>C

* Write a program that reads a message from the user and performs a
Caesar cipher on its letters:

Your secret message: Brad thinks Angelina is cute
Your secret key: 3
The encoded message: eudg wklgnv dgjholgd 1lv fxwh

Stringsand ints

e All char values are assigned numbers internally by the computer, called
ASCII values.

* Examples:
"A' is 65, 'B' is 66, ' ' is 32
'a' is 97, 'o' is 98, '* ' s 42

* One characterlong Strings and ints can be converted to each other
ord('a') is 97, chr (103) is'g

* This is useful because you can do the following:
chr (ord('a' + 2)) is 'c'

