CSc 110, Spring 2018

Lecture 21: Line-Based File Input
Adapted from slides by Marty Stepp and Stuart Reges

OLD CODE OF
MINE. I'D NEVER

MAKE THOSE

CHOICES NOW.
| CAN HARDLY
BEAR TO LOOK

ATIT.

Not Iinvented Here™ @ Bill Barnes & Paul Southworth NotinventedHere.com




(Gas prices question

* Write a program that reads a file gasprices. txt
* Format: Belgium 5/gal US S/gal date ...

8.20 3.81 3/21/11 8.08 3.84 3/28/11

* The program should print the average gas price over all data in the file
for both countries:

Belgium average: 8.3
USA average: 3.9




Multiple tokens on one line

You can use read to read the whole file into a string and the split
function to break a file apart

estr.split () — splits a string on blank space

estr.split (other_str) — splits a string on occurrences of the
other string

>>> £ = open ("hours. txt")
>>> text = f£.read()
'l 2\n45 o\n'

>>> £ = text.split()
[111, 121, 1451, 161]




I ———
Looping through a file
* Theresult of split canbeusedina for ... in loop

* A template for reading files in Python:

file = open ("filename")
text = file.read()
text = text.split()
for line 1n text:
statements



Gas prices solution

def main() :

file = open ("gasprices.txt")
belgium = O

usa = 0

count = 0

lines = file.read() .split ()

for 1 in range (0, len(lines), 3):
belgium += float(lines[i])
usa += float(lines[i + 17])

print ("Belgium average:", (belgium / count), "$/gal")
print ("USA average:", (usa / count), "$/gal")



Hours question

* Given a file hours. txt with the following contents:

123 Clark 12.5 8.1 7.6 3.2 600D TEACHES
456 Jordan 4.0 11.6 6.5 2.7 12 ,“GR“,&

789 Faiz 8.0 8.0 8.0 8.0 7.5 TEACHER'S ASSISTANT

* Consider the task of computing hours worked by each person:

Clark (ID#123) worked 31.4 hours (7.85 hours/day)
Jordan (ID#456) worked 36.8 hours (7.36 hours/day)
Faiz (ID#789) worked 39.5 hours (7.90 hours/day)




Line-based file processing

* Instead of using read () use readlines () toread the file

* Thenuse split () oneachline

file = open ("<filename>")
lines = file.readlines{()
For line in lines:
parts = line.split ()
<process the parts of the line>




Hours answer

# Processes an employee input file and outputs each employee's hours.

def main () :
file = open ("hours.txt")
lines = file.readlines()
for line in lines:

process employee (line)

def process employee(line):

parts = line.split ()

id = parts[0] # e.g. 456
name = parts[1] # e.g. "Greg"
sum = 0

count = 0

for i in range (2, len(parts)):

sum += float (parts[i])

count += 1

average = sum / count
print (name + " (ID#" + id + ") worked " +
str(sum) + " hours (" + str(average)

+ " hours/day)")



IMDb movies problem

Consider the following Internet Movie Database (IMDb) data:

1 9.1 196376 The Shawshank Redemption (1994)
2 9.0 139085 The Godfather: Part II (1974)
3 8.8 81507 Casablanca (1942)

Write a program that displays any movies containing a phrase:

Search word? Eart

Rank Votes Rating Title

2 139085 9.0 The Godfather: Part II
40 129172 8.5 The Departed (2006)

95 20401 8.2 The Apartment (1960)
192 30587 8.0 Spartacus (1960)

4 matches.

* Is this a token or line-based problem?

(1974)




"Chaining"
* main should be a concise summary of your program.

e Itis bad if each function calls the next without ever returning (we call this
chaining):

main )
| functionA

| functionB
\\\1functionC~\\‘

functionD

e A better structure has main make most of the calls.
* Functions must return values to main to be passed on later.

main )
1| functiona

\\\ﬂfunctionB —

functionD

functionD




Bad IMDb "chained" code 1

# Displays IMDB's Top 250 movies that match a search string.
def main () :
get word()

# Asks the user for their search word and returns it.
def get word():

search word = input ("Search word: ")

search word search word.lower ()

print ()

file = open("imdb.txt")

search(file, search word)

# Breaks apart each line, looking for lines that match the search word.

def search(file, search word):
matches = 0
for line in file:
line lower = line.lower () # case-insensitive match
if (search word in line lower):
matches += 1
print ("Rank\tVotes\tRating\tTitle")
display(line)



Bad IMDb "chained" code 2

# Displays the line in the proper format on the screen.
def display(line):

parts = line.split ()

rank = parts[0]

rating = parts[1]

votes = parts[2]

title = ""
for i in range (3, len(parts)):
title += parts([i] + " " # the rest of the line

print (rank + "\t" + votes + "\t" + rating + "\t" + title)




Better IMDb answer 1

# Displays IMDB's Top 250 movies that match a search string.

def main{() :
search word = get word()
file = open("imdb.txt")
line = search(file, search word)

if (len(line) > 0):

print ("Rank\tVotes\tRating\tTitle")

matches = 0

while (len(line) > 0):
display(line)
line = search(file, search word)
matches += 1

print (str (matches) + " matches.")

# Asks the user for their search word and returns it.
def get word() :

search word = input ("Search word: ")

search word search word.lower ()

print ()

return search word



Better IMDb answer 2

# Breaks apart each line, looking for lines that match the search word.

def search(file, search word):
for line in file:
line lower = line.lower () # case-insensitive match
if (search word in line):
return line
return "" # not found

# displays the line in the proper format on the screen.
def display(line) :

parts = line.split ()

rank = parts[0]

rating = parts[1]

votes = parts[2]

title = ""
for i in range (3, len(parts)):
title += parts([i] + " " # the rest of the line

print (rank + "\t" + votes + "\t" + rating + "\t" + title)



