
University of Arizon, CSc 337
Homework Assignment 8: Book Review

This assignment is about making a web service and using Ajax to retrieve data from it. You will write a NodeJS service that
will generate a variety of data about different books depending on the parameters it is sent. You will also write Javascript
code to make requests to this service and inject the responses into a page. Turn in these files:

• bestreads_service.js, the NodeJS service that will supply the book data
• bestreads.js, the Javascript that will request the information from bestreads_service.js and inject it into

bestreads.html

bestreads.html and bestreads.css are provided for you. You may not modify them.

When the page loads it should display the
images and titles of each book that you have
data for and the singlebook div should be
hidden. If the user clicks a book cover or title
all of the books and titles should be removed

from the page and the singlebook div
should be shown. You should send a request to
the server for data for this book and display its
cover image, title, author, rating, description
and reviews.

From the course web site you will download a
.ZIP archive of input files for many books,
described on the next page. Unzip this file into
the same directory as your HW8 files, so that
the files will be located in relative paths such as
books/harrypotter/info.txt and
books/wizardofoz/cover.jpg. Your code
should assume these are the relative paths to
use.

Web Service Details:
Your bestreads_service.js service will provide different data based upon a couple query parameters named mode and title

that are passed from your Javascript to the page in its URL. The value of mode should be description, info, reviews

or books depending on which information you want. The value of title should be a string representing the single book
to display. The browser will request your page with a URL such as the following:

http://localhost:3000?mode=description&title=harrypotter

 Your NodeJS code can store these parameters into variables using code such as the following:

var book = req.query.title;

All of your NodeJS code should use these parameters’ values, and you should never hard-code particular book names. Your
code may assume that the browser has properly supplied these parameters and has given them valid values. You may assume
that the book exists and has a corresponding folder of valid input data and images. You do not have to handle the case of

a missing or empty mode or title parameter, a value that contains bad characters, a value of a book that is not found, etc.

Based upon the mode variable's value, your service must output that data. All book data is in a books directory. Each book
is stored in a directory named the same as your query parameter in that books directory. For example, the book

harrypotter stores its files in a folder named books/harrypotter/ . You may assume that the files exist and are valid
at all times.

The behavior of each mode is described below:

• mode=info: The title parameter must also be passed with this mode. Your service should output the contents of
info.txt, a file with three lines of information about the book: its title, author, and number of stars, as JSON.
For example:

{"title":"Harry Potter and the Prisoner of Azkaban",

 "author":"by J.K. Rowling, Mary GrandPre(Illustrator)",

 "stars":"4.5"}

• mode=description: The title parameter must also be passed with this mode. Your service should output the entire
contents of description.txt, a file with information about the book, as plain text.

• mode=reviews: The title parameter must also be passed with this mode. Output JSON for all of the reviews for
the book. All of the reviews should be in a list called “reviews”. Each review should contain a reviewer name,
number of stars and review text. The reviews are stored in files called review1.txt, review2.txt, etc. Each file
contains one review for each book which is exactly three lines: The reviewer's name, the number of stars they gave
the book and their review. If a book has 10 or more reviews, the names will be e.g. review01.txt, So don't hard-

code file names like "review1.txt"; look for all files that begin with "review" and end with ".txt". Example
output:

{"reviews": [{"name": "Wil Wheaton", "stars": 4,

 "review": "I'm beginning to wonder if there will ever be a

 Defense Against The Dark Arts teacher who is just a

 teacher."},

 ...

]

}

• mode=books: Outputs JSON containing the titles and folder names for each of the books that you have data for.
The JSON for each book should be stored as a list element in a list accessed with the name books. Each book

should contain a title and a folder. If a new folder of book data is added to your books folder your program
should automatically adjust to include it the next time your service is called. Example output:

 {"books": [{"title": "Harry Potter and the Prisoner of Azkaban",

 "folder": "harrypotter"},

 {"title": "The Wizard of Oz",

 "folder": "wizardofoz"},

 ...

]

 }

Javascript Details:
Your bestreads.js will use Ajax fetch to request data from your NodeJS service and insert it into bestreads.html. Here is
the functionality your page should have:

 When the page loads it should request all of the books (mode=books) from the web service. It should display

each of these books by adding the image of the book’s cover and the book’s title (in a paragraph) to a div and
adding that div to the allbooks div already on the page. The singlebook div should be hidden.

 If the home button on the upper right is clicked it should do the same thing that the page does when it loads. Even
if the button is pressed multiple times very quickly, only one listing for each book should appear on the page.

 When a user clicks on a book cover or title of a book the allbooks div should be emptied out and the

singlebook div should be shown. You should then request the info, description and reviews for that book
from the server. The title, author and stars gotten from the info request should be inserted into the elements with
ids matching their names. The description can be directly inserted into the paragraph with the id description.

The reviews should be inserted into the div with the id reviews. Output the reviewer name and number of
stars in an h3 and the review text in a paragraph. For example the code in the allbooks div might be:

<h3>Wil Wheaton4</h3>

<p>I'm beginning to wonder if there will ever be a Defense Against The Dark

Arts teacher who is just a teacher.</p>

<h3>Zoe5</h3>

<p>Yup yup yup I love this book</p>

<h3>Kiki5</h3>

<p>Literally one of the best books I've ever read. I was chained to it for two

days. </p>

Development Strategy and Hints:
NodeJS code is difficult to debug if you have errors. Write the program incrementally, adding small pieces of code to a
working page, and not advancing until you have tested the new code. The following functions may be helpful:

Implementation and Grading:
For full credit, your JS code should follow the rules listed in the Style Guide on the class web site. Your page's output must
successfully pass the W3C HTML validator. (Not the NodeJS service but your bestreads.html after you have inserted
data you have gotten back from the service in it. To validate your page, view the page, then choose View Source in your
browser and copy/paste it into the validator.) Your JavaScript code should pass our JSLint tool with no errors. Your .js

file must run in JavaScript strict mode by putting "use strict"; at the top.

We will also grade the style of your NodeJS and JS code. Do not use the global keyword. Use indentation/spacing,
and avoid long lines over 100 characters. Avoid redundant code, and use parameters and return values properly. Make extra
effort to minimize redundant code. Capture common operations as functions to keep code size and complexity from
growing. For full credit your code must have at least one function in each language to remove redundancy and/or capture
structure.

Make sure to test your code on all available books from the ZIP file. You may want to think about other edge cases, such
as what your page should do if the book has only a single review, etc. You should not have code that depends on particular

books or uses if/else statements to see which book to display.

Use the "module pattern" shown in class to wrap your JS code in an anonymous function. No global variables or
symbols, nor "module-global" vars, are allowed in JS on this assignment; values should be declared at the most local scope

possible. If a constant value is used, you may declare it as a module-global "constant" variable IN_UPPER_CASE.

Fetch data using Ajax fetch. Be careful to avoid redundancy in your Ajax code; if you do similar Ajax operations in many

places, make a helper function(s). Process JSON data using JSON.parse.

Another grading focus is commenting. Put a descriptive header (name, course, date, description) at the top of your code
and comment each non-trivial section of NodeJS and JS code explaining the purpose of that code.

Format your JS and NodeJS code similarly to the examples from class. Properly use whitespace and indentation.

Please do not place a solution to this assignment online on a publicly accessible web site.

Copyright © Allison Obourn, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

