
CSc 337
LECTURE 4: POSITIONING

The CSS float property
property description

float side to hover on; can be left, right, or none (default)

• a floating element is removed from normal
document flow

• underlying text wraps around it as necessary

Float example

Lorem ipsum dolor sit amet, consectetur adipiscing elit.... HTML

img.headericon {

float: left;

} CSS

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam scelerisque purus

ut dui mollis, sed malesuada leo pretium. Morbi bibendum mi at lacus rutrum

convallis. Duis id eros dolor. In id eros blandit lectus viverra facilisis at commodo

velit. Cras pretium nunc id nisl elementum, at interdum odio blandit. Donec luctus

rutrum iaculis. Praesent luctus ante et cursus suscipit. Nullam congue egestas lorem

nec luctus. Donec tincidunt tortor mi, nec ultricies orci bibendum a. Aliquam viverra metus nec

ligula varius feugiat. In lacinia ligula accumsan tortor porttitor ornare. Donec interdum mattis

purus sit amet ultrices. output

Floating content and width
I am not floating, no width set

• often floating elements should have a width property value
• if no width is specified, other content may be unable to wrap around the
floating element

I am floating right, no width set

I am floating right, no width set, but my text is very long so this paragraph doesn't really seem like it's
floating at all, darn

I am not floating, 45% width I am floating right, 45% width

The clear property
p { background-color: fuchsia; }

h2 { clear: right; background-color: cyan; } CSS

XKCD a webcomic of romance, sarcasm, math, and language...

My XKCD Fan Site

property description

clear disallows floating elements from overlapping this element;
can be left, right, both, or none (default)

Common error: container too short
<p>

XKCD a webcomic of romance, sarcasm,

math, and language...</p> HTML

p { border: 2px dashed black; }

img { float: right; } CSS

XKCD a webcomic of romance, sarcasm, math, and language...

• We want the p containing the image to extend downward so that its border
encloses the entire image

The overflow property
p { border: 2px dashed black; overflow: hidden; } CSS

XKCD a webcomic of romance, sarcasm, math, and language...

property description

overflow specifies what to do if an element's content is too large;
can be auto, visible, hidden, or scroll

To achieve more complicated layouts, we can enable a different kind of CSS
layout rendering mode: Flex layout.

Flex layout defines a special set of rules for laying out items in rows or columns.

Flex layout

Flex layouts are composed of:
- A Flex container, which contains one or more:

- Flex item(s)
You can then apply CSS properties on the flex container to dictate how the flex
items are displayed.

Flex basics

id=flex-container

class=
flex-
item

To make an element a flex container, change display:
- Block container: display: flex; or
- Inline container: display: inline-flex;

Flex basics

You can control where the item is horizontally* in the box by setting
justify-content on the flex container:

Flex basics: justify-content

*when flex direction is row. We'll get
to what "flex direction" means soon.

#flex-container {

display: flex;

justify-content: flex-start;

}

You can control where the item is horizontally* in the box by setting
justify-content on the flex container:

Flex basics: justify-content

*when flex direction is row. We'll get
to what "flex direction" means soon.

#flex-container {

display: flex;

justify-content: flex-end;

}

You can control where the item is horizontally* in the box by setting
justify-content on the flex container:

Flex basics: justify-content

*when flex direction is row. We'll get
to what "flex direction" means soon.

#flex-container {

display: flex;

justify-content: center;

}

You can control where the item is vertically* in the box by setting
align-items on the flex container:

Flex basics: align-items

*when flex direction is row. We'll get
to what "flex direction" means soon.

#flex-container {

display: flex;

align-items: flex-start;

}

You can control where the item is vertically* in the box by setting
align-items on the flex container:

Flex basics: align-items

*when flex direction is row. We'll get
to what "flex direction" means soon.

#flex-container {

display: flex;

align-items: flex-end;

}

You can control where the item is vertically* in the box by setting
align-items on the flex container:

Flex basics: align-items

*when flex direction is row. We'll get
to what "flex direction" means soon.

#flex-container {

display: flex;

align-items: center;

}

Same rules apply with multiple flex items:

Multiple items

#flex-container {

display: flex;

justify-content: flex-start;

align-items: center;

}

Same rules apply with multiple flex items:

Multiple items

#flex-container {

display: flex;

justify-content: flex-end;

align-items: center;

}

Same rules apply with multiple flex items:

Multiple items

#flex-container {

display: flex;

justify-content: center;

align-items: center;

}

And there is also space-between and space-around:

Multiple items

#flex-container {

display: flex;

Justify-content: space-between;

align-items: center;

}

And there is also space-between and space-around:

Multiple items

#flex-container {

display: flex;

Justify-content: space-around;

align-items: center;

}

#flex-container {

display: flex;

flex-direction: column;

}

And you can also lay out columns instead of rows:

flex-direction

#flex-container {

display: flex;

flex-direction: column;

justify-content: center;

}

And you can also lay out columns instead of rows:

flex-direction

Now justify-content controls where the
column is vertically in the box

#flex-container {

display: flex;

flex-direction: column;

justify-content: space-around;

}

And you can also lay out columns instead of rows:

flex-direction

Now justify-content controls where the
column is vertically in the box

#flex-container {

display: flex;

flex-direction: column;

align-items: center;

}

And you can also lay out columns instead of rows:

flex-direction

Now align-items controls where the
column is horizontally in the box

#flex-container {

display: flex;

flex-direction: column;

align-items: flex-end;

}

And you can also lay out columns instead of rows:

flex-direction

Now align-items controls where the
column is horizontally in the box

● Write code to match the
image on the right.

● Starter code available here.

Activity

http://allisonobourn.com/337/fall18/lectures/08-30/positions.html

The position property
div#ad {

position: fixed;

right: 10%;

top: 45%;

} CSS

property value description

position static default position

relative offset from its normal static position

absolute a fixed position within its containing element

fixed a fixed position within the browser window

top, bottom,
left, right

positions of box's corners

Here I am!

http://www.w3schools.com/cssref/pr_pos_top.asp
http://www.w3schools.com/cssref/pr_pos_bottom.asp
http://www.w3schools.com/cssref/pr_pos_left.asp
http://www.w3schools.com/cssref/pr_pos_right.asp

Absolute positioning
#menubar {

position: absolute;

left: 400px;

top: 50px;

} CSS

• removed from normal flow (like floating ones)
• positioned relative to the block element

containing them (assuming that block also
uses absolute or relative positioning)

• actual position determined
by top, bottom, left, right values

• should often specify a width property as well

Relative positioning
#area2 { position: relative; } CSS

• absolute-positioned elements are normally
positioned at an offset from the corner of the
overall web page

• to instead cause the absolute element to position
itself relative to some other element's corner, wrap
the absolute element in an element
whose position is relative

Fixed positioning

• removed from normal flow (like floating
ones)

• positioned relative to the browser window

◦ even when the user scrolls the window,
element will remain in the same place

Alignment vs. float vs. position
1. if possible, lay out an element by aligning its content

• horizontal alignment: text-align
• set this on a block element; it aligns the content within it (not the
block element itself)

• vertical alignment: vertical-align
• set this on an inline element, and it aligns it vertically within its
containing element

2. if alignment won't work, try floating the element
3. if floating won't work, try positioning the element

• absolute/fixed positioning are a last resort and should not be overused

Details about inline boxes
• size properties (width, height, min-width, etc.) are ignored for inline
boxes

• margin-top and margin-bottom are ignored, but margin-
left and margin-right are not

• the containing block box's text-align property controls horizontal position
of inline boxes within it

• text-align does not align block boxes within the page

• each inline box's vertical-align property aligns it vertically within its
block box

The display property
h2 { display: inline; background-color: yellow; } CSS

This is another headingThis is a heading output

property description

display sets the type of CSS box model an element is displayed with

• values: none, inline, block, run-in, compact, ...

• use sparingly, because it can radically alter the page layout

Displaying block elements as inline
<ul id="topmenu">

Item 1

Item 2

Item 3

 HTML

#topmenu li {

display: inline;

border: 2px solid gray;

margin-right: 1em;

} CSS

• lists and other block elements can be displayed inline
• flow left-to-right on same line
• width is determined by content (block elements are 100% of page width)

Item 1 Item 2 Item 3 output

